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Praise for Natural Language Processing
with Transformers

Pretrained transformer language models have taken the NLP world by storm, while
libraries such as  Transformers have made them much easier to use. Who better to

teach you how to leverage the latest breakthroughs in NLP than the creators of said
library? Natural Language Processing with Transformers is a tour de force, reflecting the

deep subject matter expertise of its authors in both engineering and research. It is the rare
book that offers both substantial breadth and depth of insight and deftly mixes research

advances with real-world applications in an accessible way. The book gives informed
coverage of the most important methods and applications in current NLP, from

multilingual to efficient models and from question answering to text generation. Each
chapter provides a nuanced overview grounded in rich code examples that highlights best

practices as well as practical considerations and enables you to put research-focused
models to impactful real-world use. Whether you’re new to NLP or a veteran, this book

will improve your understanding and fast-track your development and deployment
of state-of-the-art models.

—Sebastian Ruder, Google DeepMind

Transformers have changed how we do NLP, and Hugging Face has pioneered how we use
transformers in product and research. Lewis Tunstall, Leandro von Werra, and Thomas

Wolf from Hugging Face have written a timely volume providing a convenient and
hands-on introduction to this critical topic. The book offers a solid conceptual grounding

of transformer mechanics, a tour of the transformer menagerie, applications of
transformers, and practical issues in training and bringing transformers to production.

Having read chapters in this book, with the depth of its content and lucid presentation, I
am confident that this will be the number one resource for anyone interested in learning

transformers, particularly for natural language processing.
—Delip Rao, Author of Natural Language Processing and

Deep Learning with PyTorch



Complexity made simple. This is a rare and precious book about NLP, transformers, and
the growing ecosystem around them, Hugging Face. Whether these are still buzzwords to

you or you already have a solid grasp of it all, the authors will navigate you with humor,
scientific rigor, and plenty of code examples into the deepest secrets of the coolest

technology around. From “off-the-shelf pretrained” to “from-scratch custom” models,
and from performance to missing labels issues, the authors address practically every real-

life struggle of a ML engineer and provide state-of-the-art solutions, making this book
destined to dictate the standards in the field for years to come.

—Luca Perrozzi, PhD, Data Science and Machine Learning
Associate Manager at Accenture
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1 For brain hygiene tips, see CGP Grey’s excellent video on memes.

Foreword

A miracle is taking place as you read these lines: the squiggles on this page are trans‐
forming into words and concepts and emotions as they navigate their way through
your cortex. My thoughts from November 2021 have now successfully invaded your
brain. If they manage to catch your attention and survive long enough in this harsh
and highly competitive environment, they may have a chance to reproduce again as
you share these thoughts with others. Thanks to language, thoughts have become air‐
borne and highly contagious brain germs—and no vaccine is coming.

Luckily, most brain germs are harmless,1 and a few are wonderfully useful. In fact,
humanity’s brain germs constitute two of our most precious treasures: knowledge and
culture. Much as we can’t digest properly without healthy gut bacteria, we cannot
think properly without healthy brain germs. Most of your thoughts are not actually
yours: they arose and grew and evolved in many other brains before they infected
you. So if we want to build intelligent machines, we will need to find a way to infect
them too.

The good news is that another miracle has been unfolding over the last few years: sev‐
eral breakthroughs in deep learning have given birth to powerful language models.
Since you are reading this book, you have probably seen some astonishing demos of
these language models, such as GPT-3, which given a short prompt such as “a frog
meets a crocodile” can write a whole story. Although it’s not quite Shakespeare yet, it’s
sometimes hard to believe that these texts were written by an artificial neural net‐
work. In fact, GitHub’s Copilot system is helping me write these lines: you’ll never
know how much I really wrote.

The revolution goes far beyond text generation. It encompasses the whole realm of
natural language processing (NLP), from text classification to summarization, trans‐
lation, question answering, chatbots, natural language understanding (NLU), and

xi
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more. Wherever there’s language, speech or text, there’s an application for NLP. You
can already ask your phone for tomorrow’s weather, or chat with a virtual help desk
assistant to troubleshoot a problem, or get meaningful results from search engines
that seem to truly understand your query. But the technology is so new that the best
is probably yet to come.

Like most advances in science, this recent revolution in NLP rests upon the hard
work of hundreds of unsung heroes. But three key ingredients of its success do stand
out:

• The transformer is a neural network architecture proposed in 2017 in a ground‐
breaking paper called “Attention Is All You Need”, published by a team of Google
researchers. In just a few years it swept across the field, crushing previous archi‐
tectures that were typically based on recurrent neural networks (RNNs). The
Transformer architecture is excellent at capturing patterns in long sequences of
data and dealing with huge datasets—so much so that its use is now extending
well beyond NLP, for example to image processing tasks.

• In most projects, you won’t have access to a huge dataset to train a model from
scratch. Luckily, it’s often possible to download a model that was pretrained on a
generic dataset: all you need to do then is fine-tune it on your own (much
smaller) dataset. Pretraining has been mainstream in image processing since the
early 2010s, but in NLP it was restricted to contextless word embeddings (i.e.,
dense vector representations of individual words). For example, the word “bear”
had the same pretrained embedding in “teddy bear” and in “to bear.” Then, in
2018, several papers proposed full-blown language models that could be pre‐
trained and fine-tuned for a variety of NLP tasks; this completely changed the
game.

• Model hubs like Hugging Face’s have also been a game-changer. In the early days,
pretrained models were just posted anywhere, so it wasn’t easy to find what you
needed. Murphy’s law guaranteed that PyTorch users would only find Tensor‐
Flow models, and vice versa. And when you did find a model, figuring out how
to fine-tune it wasn’t always easy. This is where Hugging Face’s Transformers
library comes in: it’s open source, it supports both TensorFlow and PyTorch, and
it makes it easy to download a state-of-the-art pretrained model from the Hug‐
ging Face Hub, configure it for your task, fine-tune it on your dataset, and evalu‐
ate it. Use of the library is growing quickly: in Q4 2021 it was used by over five
thousand organizations and was installed using pip over four million times per
month. Moreover, the library and its ecosystem are expanding beyond NLP:
image processing models are available too. You can also download numerous
datasets from the Hub to train or evaluate your models.

So what more can you ask for? Well, this book! It was written by open source devel‐
opers at Hugging Face—including the creator of the Transformers library!—and it
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shows: the breadth and depth of the information you will find in these pages is
astounding. It covers everything from the Transformer architecture itself, to the
Transformers library and the entire ecosystem around it. I particularly appreciated
the hands-on approach: you can follow along in Jupyter notebooks, and all the code
examples are straight to the point and simple to understand. The authors have exten‐
sive experience in training very large transformer models, and they provide a wealth
of tips and tricks for getting everything to work efficiently. Last but not least, their
writing style is direct and lively: it reads like a novel.

In short, I thoroughly enjoyed this book, and I’m certain you will too. Anyone inter‐
ested in building products with state-of-the-art language-processing features needs to
read it. It’s packed to the brim with all the right brain germs!

— Aurélien Géron
November 2021, Auckland, NZ
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1 NLP researchers tend to name their creations after characters in Sesame Street. We’ll explain what all these
acronyms mean in Chapter 1.

Preface

Since their introduction in 2017, transformers have become the de facto standard for
tackling a wide range of natural language processing (NLP) tasks in both academia
and industry. Without noticing it, you probably interacted with a transformer today:
Google now uses BERT to enhance its search engine by better understanding users’
search queries. Similarly, the GPT family of models from OpenAI have repeatedly
made headlines in mainstream media for their ability to generate human-like text and
images.1 These transformers now power applications like GitHub’s Copilot, which, as
shown in Figure P-1, can convert a comment into source code that automatically cre‐
ates a neural network for you!

So what is it about transformers that changed the field almost overnight? Like many
great scientific breakthroughs, it was the synthesis of several ideas, like attention,
transfer learning, and scaling up neural networks, that were percolating in the research
community at the time.

But however useful it is, to gain traction in industry any fancy new method needs
tools to make it accessible. The  Transformers library and its surrounding ecosys‐
tem answered that call by making it easy for practitioners to use, train, and share
models. This greatly accelerated the adoption of transformers, and the library is now
used by over five thousand organizations. Throughout this book we’ll guide you on
how to train and optimize these models for practical applications.

xv
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Figure P-1. An example from GitHub Copilot where, given a brief description of the
task, the application provides a suggestion for the entire class (everything following
class is autogenerated)

Who Is This Book For?
This book is written for data scientists and machine learning engineers who may have
heard about the recent breakthroughs involving transformers, but are lacking an in-
depth guide to help them adapt these models to their own use cases. The book is not
meant to be an introduction to machine learning, and we assume you are comfortable
programming in Python and has a basic understanding of deep learning frameworks
like PyTorch and TensorFlow. We also assume you have some practical experience
with training models on GPUs. Although the book focuses on the PyTorch API of 
Transformers, Chapter 2 shows you how to translate all the examples to TensorFlow.

The following resources provide a good foundation for the topics covered in this
book. We assume your technical knowledge is roughly at their level:

• Hands-On Machine Learning with Scikit-Learn and TensorFlow, by Aurélien
Géron (O’Reilly)

• Deep Learning for Coders with fastai and PyTorch, by Jeremy Howard and Sylvain
Gugger (O’Reilly)
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• Natural Language Processing with PyTorch, by Delip Rao and Brian McMahan
(O’Reilly)

• The Hugging Face Course, by the open source team at Hugging Face

What You Will Learn
The goal of this book is to enable you to build your own language applications. To
that end, it focuses on practical use cases, and delves into theory only where neces‐
sary. The style of the book is hands-on, and we highly recommend you experiment by
running the code examples yourself.

The book covers all the major applications of transformers in NLP by having each
chapter (with a few exceptions) dedicated to one task, combined with a realistic use
case and dataset. Each chapter also introduces some additional concepts. Here’s a
high-level overview of the tasks and topics we’ll cover:

• Chapter 1, Hello Transformers, introduces transformers and puts them into con‐
text. It also provides an introduction to the Hugging Face ecosystem.

• Chapter 2, Text Classification, focuses on the task of sentiment analysis (a com‐
mon text classification problem) and introduces the Trainer API.

• Chapter 3, Transformer Anatomy, dives into the Transformer architecture in
more depth, to prepare you for the chapters that follow.

• Chapter 4, Multilingual Named Entity Recognition, focuses on the task of identify‐
ing entities in texts in multiple languages (a token classification problem).

• Chapter 5, Text Generation, explores the ability of transformer models to gener‐
ate text, and introduces decoding strategies and metrics.

• Chapter 6, Summarization, digs into the complex sequence-to-sequence task of
text summarization and explores the metrics used for this task.

• Chapter 7, Question Answering, focuses on building a review-based question
answering system and introduces retrieval with Haystack.

• Chapter 8, Making Transformers Efficient in Production, focuses on model perfor‐
mance. We’ll look at the task of intent detection (a type of sequence classification
problem) and explore techniques such a knowledge distillation, quantization,
and pruning.

• Chapter 9, Dealing with Few to No Labels, looks at ways to improve model perfor‐
mance in the absence of large amounts of labeled data. We’ll build a GitHub
issues tagger and explore techniques such as zero-shot classification and data
augmentation.
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• Chapter 10, Training Transformers from Scratch, shows you how to build and
train a model for autocompleting Python source code from scratch. We’ll look at
dataset streaming and large-scale training, and build our own tokenizer.

• Chapter 11, Future Directions, explores the challenges transformers face and
some of the exciting new directions that research in this area is going into.

 Transformers offers several layers of abstraction for using and training trans‐
former models. We’ll start with the easy-to-use pipelines that allow us to pass text
examples through the models and investigate the predictions in just a few lines of
code. Then we’ll move on to tokenizers, model classes, and the Trainer API, which
allow us to train models for our own use cases. Later, we’ll show you how to replace
the Trainer with the  Accelerate library, which gives us full control over the train‐
ing loop and allows us to train large-scale transformers entirely from scratch!
Although each chapter is mostly self-contained, the difficulty of the tasks increases in
the later chapters. For this reason, we recommend starting with Chapters 1 and 2,
before branching off into the topic of most interest.

Besides  Transformers and  Accelerate, we will also make extensive use of
 Datasets, which seamlessly integrates with other libraries.  Datasets offers similar

functionality for data processing as Pandas but is designed from the ground up for
tackling large datasets and machine learning.

With these tools, you have everything you need to tackle almost any NLP challenge!

Software and Hardware Requirements
Due to the hands-on approach of this book, we highly recommend that you run the
code examples while you read each chapter. Since we’re dealing with transformers,
you’ll need access to a computer with an NVIDIA GPU to train these models. Fortu‐
nately, there are several free online options that you can use, including:

• Google Colaboratory
• Kaggle Notebooks
• Paperspace Gradient Notebooks

To run the examples, you’ll need to follow the installation guide that we provide in
the book’s GitHub repository. You can find this guide and the code examples at
https://github.com/nlp-with-transformers/notebooks.

We developed most of the chapters using NVIDIA Tesla P100
GPUs, which have 16GB of memory. Some of the free platforms
provide GPUs with less memory, so you may need to reduce the
batch size when training the models.

xviii | Preface

https://oreil.ly/jyXgA
https://oreil.ly/RnMP3
https://oreil.ly/mZEKy
https://github.com/nlp-with-transformers/notebooks


Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/nlp-with-transformers/notebooks.

If you have a technical question or a problem using the code examples, please send
email to bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
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need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of
example code from this book into your product’s documentation does require
permission.

We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “Natural Language Pro‐
cessing with Transformers by Lewis Tunstall, Leandro von Werra, and Thomas Wolf
(O’Reilly). Copyright 2022 Lewis Tunstall, Leandro von Werra, and Thomas Wolf,
978-1-098-10324-8.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit http://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/nlp-with-transformers.
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CHAPTER 1

Hello Transformers

In 2017, researchers at Google published a paper that proposed a novel neural net‐
work architecture for sequence modeling.1 Dubbed the Transformer, this architecture
outperformed recurrent neural networks (RNNs) on machine translation tasks, both
in terms of translation quality and training cost.

In parallel, an effective transfer learning method called ULMFiT showed that training
long short-term memory (LSTM) networks on a very large and diverse corpus could
produce state-of-the-art text classifiers with little labeled data.2

These advances were the catalysts for two of today’s most well-known transformers:
the Generative Pretrained Transformer (GPT)3 and Bidirectional Encoder Represen‐
tations from Transformers (BERT).4 By combining the Transformer architecture with
unsupervised learning, these models removed the need to train task-specific architec‐
tures from scratch and broke almost every benchmark in NLP by a significant mar‐
gin. Since the release of GPT and BERT, a zoo of transformer models has emerged; a
timeline of the most prominent entries is shown in Figure 1-1.

1
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Figure 1-1. The transformers timeline

But we’re getting ahead of ourselves. To understand what is novel about transformers,
we first need to explain:

• The encoder-decoder framework
• Attention mechanisms
• Transfer learning

In this chapter we’ll introduce the core concepts that underlie the pervasiveness of
transformers, take a tour of some of the tasks that they excel at, and conclude with a
look at the Hugging Face ecosystem of tools and libraries.

Let’s start by exploring the encoder-decoder framework and the architectures that
preceded the rise of transformers.

The Encoder-Decoder Framework
Prior to transformers, recurrent architectures such as LSTMs were the state of the art
in NLP. These architectures contain a feedback loop in the network connections that
allows information to propagate from one step to another, making them ideal for
modeling sequential data like text. As illustrated on the left side of Figure 1-2, an
RNN receives some input (which could be a word or character), feeds it through the
network, and outputs a vector called the hidden state. At the same time, the model
feeds some information back to itself through the feedback loop, which it can then
use in the next step. This can be more clearly seen if we “unroll” the loop as shown on
the right side of Figure 1-2: the RNN passes information about its state at each step to
the next operation in the sequence. This allows an RNN to keep track of information
from previous steps, and use it for its output predictions.

2 | Chapter 1: Hello Transformers



5 I. Sutskever, O. Vinyals, and Q.V. Le, “Sequence to Sequence Learning with Neural Networks”, (2014).

Figure 1-2. Unrolling an RNN in time

These architectures were (and continue to be) widely used for NLP tasks, speech pro‐
cessing, and time series. You can find a wonderful exposition of their capabilities in
Andrej Karpathy’s blog post, “The Unreasonable Effectiveness of Recurrent Neural
Networks”.

One area where RNNs played an important role was in the development of machine
translation systems, where the objective is to map a sequence of words in one lan‐
guage to another. This kind of task is usually tackled with an encoder-decoder or
sequence-to-sequence architecture,5 which is well suited for situations where the input
and output are both sequences of arbitrary length. The job of the encoder is to
encode the information from the input sequence into a numerical representation that
is often called the last hidden state. This state is then passed to the decoder, which
generates the output sequence.

In general, the encoder and decoder components can be any kind of neural network
architecture that can model sequences. This is illustrated for a pair of RNNs in
Figure 1-3, where the English sentence “Transformers are great!” is encoded as a hid‐
den state vector that is then decoded to produce the German translation “Trans‐
former sind grossartig!” The input words are fed sequentially through the encoder
and the output words are generated one at a time, from top to bottom.
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6 D. Bahdanau, K. Cho, and Y. Bengio, “Neural Machine Translation by Jointly Learning to Align and Trans‐
late”, (2014).

Figure 1-3. An encoder-decoder architecture with a pair of RNNs (in general, there are
many more recurrent layers than those shown here)

Although elegant in its simplicity, one weakness of this architecture is that the final
hidden state of the encoder creates an information bottleneck: it has to represent the
meaning of the whole input sequence because this is all the decoder has access to
when generating the output. This is especially challenging for long sequences, where
information at the start of the sequence might be lost in the process of compressing
everything to a single, fixed representation.

Fortunately, there is a way out of this bottleneck by allowing the decoder to have
access to all of the encoder’s hidden states. The general mechanism for this is called
attention,6 and it is a key component in many modern neural network architectures.
Understanding how attention was developed for RNNs will put us in good shape to
understand one of the main building blocks of the Transformer architecture. Let’s
take a deeper look.

Attention Mechanisms
The main idea behind attention is that instead of producing a single hidden state for
the input sequence, the encoder outputs a hidden state at each step that the decoder
can access. However, using all the states at the same time would create a huge input
for the decoder, so some mechanism is needed to prioritize which states to use. This
is where attention comes in: it lets the decoder assign a different amount of weight, or
“attention,” to each of the encoder states at every decoding timestep. This process is
illustrated in Figure 1-4, where the role of attention is shown for predicting the third
token in the output sequence.
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Figure 1-4. An encoder-decoder architecture with an attention mechanism for a pair of
RNNs

By focusing on which input tokens are most relevant at each timestep, these
attention-based models are able to learn nontrivial alignments between the words in a
generated translation and those in a source sentence. For example, Figure 1-5 visual‐
izes the attention weights for an English to French translation model, where each
pixel denotes a weight. The figure shows how the decoder is able to correctly align the
words “zone” and “Area”, which are ordered differently in the two languages.

Figure 1-5. RNN encoder-decoder alignment of words in English and the generated
translation in French (courtesy of Dzmitry Bahdanau)
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7 Weights are the learnable parameters of a neural network.

Although attention enabled the production of much better translations, there was still
a major shortcoming with using recurrent models for the encoder and decoder: the
computations are inherently sequential and cannot be parallelized across the input
sequence.

With the transformer, a new modeling paradigm was introduced: dispense with
recurrence altogether, and instead rely entirely on a special form of attention called
self-attention. We’ll cover self-attention in more detail in Chapter 3, but the basic idea
is to allow attention to operate on all the states in the same layer of the neural net‐
work. This is shown in Figure 1-6, where both the encoder and the decoder have their
own self-attention mechanisms, whose outputs are fed to feed-forward neural net‐
works (FF NNs). This architecture can be trained much faster than recurrent models
and paved the way for many of the recent breakthroughs in NLP.

Figure 1-6. Encoder-decoder architecture of the original Transformer

In the original Transformer paper, the translation model was trained from scratch on
a large corpus of sentence pairs in various languages. However, in many practical
applications of NLP we do not have access to large amounts of labeled text data to
train our models on. A final piece was missing to get the transformer revolution
started: transfer learning.

Transfer Learning in NLP
It is nowadays common practice in computer vision to use transfer learning to train a
convolutional neural network like ResNet on one task, and then adapt it to or fine-
tune it on a new task. This allows the network to make use of the knowledge learned
from the original task. Architecturally, this involves splitting the model into of a body
and a head, where the head is a task-specific network. During training, the weights of
the body learn broad features of the source domain, and these weights are used to ini‐
tialize a new model for the new task.7 Compared to traditional supervised learning,
this approach typically produces high-quality models that can be trained much more
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efficiently on a variety of downstream tasks, and with much less labeled data. A com‐
parison of the two approaches is shown in Figure 1-7.

Figure 1-7. Comparison of traditional supervised learning (left) and transfer learning
(right)

In computer vision, the models are first trained on large-scale datasets such as Image‐
Net, which contain millions of images. This process is called pretraining and its main
purpose is to teach the models the basic features of images, such as edges or colors.
These pretrained models can then be fine-tuned on a downstream task such as classi‐
fying flower species with a relatively small number of labeled examples (usually a few
hundred per class). Fine-tuned models typically achieve a higher accuracy than
supervised models trained from scratch on the same amount of labeled data.

Although transfer learning became the standard approach in computer vision, for
many years it was not clear what the analogous pretraining process was for NLP. As a
result, NLP applications typically required large amounts of labeled data to achieve
high performance. And even then, that performance did not compare to what was
achieved in the vision domain.
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8 A. Radford, R. Jozefowicz, and I. Sutskever, “Learning to Generate Reviews and Discovering Sentiment”,
(2017).

9 A related work at this time was ELMo (Embeddings from Language Models), which showed how pretraining
LSTMs could produce high-quality word embeddings for downstream tasks.

10 This is more true for English than for most of the world’s languages, where obtaining a large corpus of digi‐
tized text can be difficult. Finding ways to bridge this gap is an active area of NLP research and activism.

In 2017 and 2018, several research groups proposed new approaches that finally
made transfer learning work for NLP. It started with an insight from researchers at
OpenAI who obtained strong performance on a sentiment classification task by using
features extracted from unsupervised pretraining.8 This was followed by ULMFiT,
which introduced a general framework to adapt pretrained LSTM models for various
tasks.9

As illustrated in Figure 1-8, ULMFiT involves three main steps:

Pretraining
The initial training objective is quite simple: predict the next word based on the
previous words. This task is referred to as language modeling. The elegance of this
approach lies in the fact that no labeled data is required, and one can make use of
abundantly available text from sources such as Wikipedia.10

Domain adaptation
Once the language model is pretrained on a large-scale corpus, the next step is to
adapt it to the in-domain corpus (e.g., from Wikipedia to the IMDb corpus of
movie reviews, as in Figure 1-8). This stage still uses language modeling, but now
the model has to predict the next word in the target corpus.

Fine-tuning
In this step, the language model is fine-tuned with a classification layer for the
target task (e.g., classifying the sentiment of movie reviews in Figure 1-8).

Figure 1-8. The ULMFiT process (courtesy of Jeremy Howard)

By introducing a viable framework for pretraining and transfer learning in NLP,
ULMFiT provided the missing piece to make transformers take off. In 2018, two
transformers were released that combined self-attention with transfer learning:
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11 Y. Zhu et al., “Aligning Books and Movies: Towards Story-Like Visual Explanations by Watching Movies and
Reading Books”, (2015).

GPT
Uses only the decoder part of the Transformer architecture, and the same lan‐
guage modeling approach as ULMFiT. GPT was pretrained on the BookCorpus,11

which consists of 7,000 unpublished books from a variety of genres including
Adventure, Fantasy, and Romance.

BERT
Uses the encoder part of the Transformer architecture, and a special form of lan‐
guage modeling called masked language modeling. The objective of masked lan‐
guage modeling is to predict randomly masked words in a text. For example,
given a sentence like “I looked at my [MASK] and saw that [MASK] was late.” the
model needs to predict the most likely candidates for the masked words that are
denoted by [MASK]. BERT was pretrained on the BookCorpus and English
Wikipedia.

GPT and BERT set a new state of the art across a variety of NLP benchmarks and
ushered in the age of transformers.

However, with different research labs releasing their models in incompatible frame‐
works (PyTorch or TensorFlow), it wasn’t always easy for NLP practitioners to port
these models to their own applications. With the release of  Transformers, a unified
API across more than 50 architectures was progressively built. This library catalyzed
the explosion of research into transformers and quickly trickled down to NLP practi‐
tioners, making it easy to integrate these models into many real-life applications
today. Let’s have a look!

Hugging Face Transformers: Bridging the Gap
Applying a novel machine learning architecture to a new task can be a complex
undertaking, and usually involves the following steps:

1. Implement the model architecture in code, typically based on PyTorch or
TensorFlow.

2. Load the pretrained weights (if available) from a server.
3. Preprocess the inputs, pass them through the model, and apply some task-

specific postprocessing.
4. Implement dataloaders and define loss functions and optimizers to train the

model.
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Each of these steps requires custom logic for each model and task. Traditionally (but
not always!), when research groups publish a new article, they will also release the
code along with the model weights. However, this code is rarely standardized and
often requires days of engineering to adapt to new use cases.

This is where  Transformers comes to the NLP practitioner’s rescue! It provides a
standardized interface to a wide range of transformer models as well as code and
tools to adapt these models to new use cases. The library currently supports three
major deep learning frameworks (PyTorch, TensorFlow, and JAX) and allows you to
easily switch between them. In addition, it provides task-specific heads so you can
easily fine-tune transformers on downstream tasks such as text classification, named
entity recognition, and question answering. This reduces the time it takes a practi‐
tioner to train and test a handful of models from a week to a single afternoon!

You’ll see this for yourself in the next section, where we show that with just a few lines
of code,  Transformers can be applied to tackle some of the most common NLP
applications that you’re likely to encounter in the wild.

A Tour of Transformer Applications
Every NLP task starts with a piece of text, like the following made-up customer feed‐
back about a certain online order:

text = """Dear Amazon, last week I ordered an Optimus Prime action figure
from your online store in Germany. Unfortunately, when I opened the package,
I discovered to my horror that I had been sent an action figure of Megatron
instead! As a lifelong enemy of the Decepticons, I hope you can understand my
dilemma. To resolve the issue, I demand an exchange of Megatron for the
Optimus Prime figure I ordered. Enclosed are copies of my records concerning
this purchase. I expect to hear from you soon. Sincerely, Bumblebee."""

Depending on your application, the text you’re working with could be a legal con‐
tract, a product description, or something else entirely. In the case of customer feed‐
back, you would probably like to know whether the feedback is positive or negative.
This task is called sentiment analysis and is part of the broader topic of text classifica‐
tion that we’ll explore in Chapter 2. For now, let’s have a look at what it takes to
extract the sentiment from our piece of text using  Transformers.

Text Classification
As we’ll see in later chapters,  Transformers has a layered API that allows you to
interact with the library at various levels of abstraction. In this chapter we’ll start with
pipelines, which abstract away all the steps needed to convert raw text into a set of
predictions from a fine-tuned model.

In  Transformers, we instantiate a pipeline by calling the pipeline() function and
providing the name of the task we are interested in:
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from transformers import pipeline

classifier = pipeline("text-classification")

The first time you run this code you’ll see a few progress bars appear because the
pipeline automatically downloads the model weights from the Hugging Face Hub.
The second time you instantiate the pipeline, the library will notice that you’ve
already downloaded the weights and will use the cached version instead. By default,
the text-classification pipeline uses a model that’s designed for sentiment analy‐
sis, but it also supports multiclass and multilabel classification.

Now that we have our pipeline, let’s generate some predictions! Each pipeline takes a
string of text (or a list of strings) as input and returns a list of predictions. Each pre‐
diction is a Python dictionary, so we can use Pandas to display them nicely as a
DataFrame:

import pandas as pd

outputs = classifier(text)
pd.DataFrame(outputs)

label score

0 NEGATIVE 0.901546

In this case the model is very confident that the text has a negative sentiment, which
makes sense given that we’re dealing with a complaint from an angry customer! Note
that for sentiment analysis tasks the pipeline only returns one of the POSITIVE or NEG
ATIVE labels, since the other can be inferred by computing 1-score.

Let’s now take a look at another common task, identifying named entities in text.

Named Entity Recognition
Predicting the sentiment of customer feedback is a good first step, but you often want
to know if the feedback was about a particular item or service. In NLP, real-world
objects like products, places, and people are called named entities, and extracting
them from text is called named entity recognition (NER). We can apply NER by load‐
ing the corresponding pipeline and feeding our customer review to it:

ner_tagger = pipeline("ner", aggregation_strategy="simple")
outputs = ner_tagger(text)
pd.DataFrame(outputs)

entity_group score word start end

0 ORG 0.879010 Amazon 5 11

1 MISC 0.990859 Optimus Prime 36 49
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entity_group score word start end

2 LOC 0.999755 Germany 90 97

3 MISC 0.556569 Mega 208 212

4 PER 0.590256 ##tron 212 216

5 ORG 0.669692 Decept 253 259

6 MISC 0.498350 ##icons 259 264

7 MISC 0.775361 Megatron 350 358

8 MISC 0.987854 Optimus Prime 367 380

9 PER 0.812096 Bumblebee 502 511

You can see that the pipeline detected all the entities and also assigned a category
such as ORG (organization), LOC (location), or PER (person) to each of them. Here we
used the aggregation_strategy argument to group the words according to the mod‐
el’s predictions. For example, the entity “Optimus Prime” is composed of two words,
but is assigned a single category: MISC (miscellaneous). The scores tell us how confi‐
dent the model was about the entities it identified. We can see that it was least confi‐
dent about “Decepticons” and the first occurrence of “Megatron”, both of which it
failed to group as a single entity.

See those weird hash symbols (#) in the word column in the previ‐
ous table? These are produced by the model’s tokenizer, which
splits words into atomic units called tokens. You’ll learn all about
tokenization in Chapter 2.

Extracting all the named entities in a text is nice, but sometimes we would like to ask
more targeted questions. This is where we can use question answering.

Question Answering
In question answering, we provide the model with a passage of text called the context,
along with a question whose answer we’d like to extract. The model then returns the
span of text corresponding to the answer. Let’s see what we get when we ask a specific
question about our customer feedback:

reader = pipeline("question-answering")
question = "What does the customer want?"
outputs = reader(question=question, context=text)
pd.DataFrame([outputs])

score start end answer

0 0.631291 335 358 an exchange of Megatron
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We can see that along with the answer, the pipeline also returned start and end inte‐
gers that correspond to the character indices where the answer span was found (just
like with NER tagging). There are several flavors of question answering that we will
investigate in Chapter 7, but this particular kind is called extractive question answer‐
ing because the answer is extracted directly from the text.

With this approach you can read and extract relevant information quickly from a cus‐
tomer’s feedback. But what if you get a mountain of long-winded complaints and you
don’t have the time to read them all? Let’s see if a summarization model can help!

Summarization
The goal of text summarization is to take a long text as input and generate a short
version with all the relevant facts. This is a much more complicated task than the pre‐
vious ones since it requires the model to generate coherent text. In what should be a
familiar pattern by now, we can instantiate a summarization pipeline as follows:

summarizer = pipeline("summarization")
outputs = summarizer(text, max_length=45, clean_up_tokenization_spaces=True)
print(outputs[0]['summary_text'])

 Bumblebee ordered an Optimus Prime action figure from your online store in
Germany. Unfortunately, when I opened the package, I discovered to my horror
that I had been sent an action figure of Megatron instead.

This summary isn’t too bad! Although parts of the original text have been copied, the
model was able to capture the essence of the problem and correctly identify that
“Bumblebee” (which appeared at the end) was the author of the complaint. In this
example you can also see that we passed some keyword arguments like max_length
and clean_up_tokenization_spaces to the pipeline; these allow us to tweak the out‐
puts at runtime.

But what happens when you get feedback that is in a language you don’t understand?
You could use Google Translate, or you can use your very own transformer to trans‐
late it for you!

Translation
Like summarization, translation is a task where the output consists of generated text.
Let’s use a translation pipeline to translate an English text to German:

translator = pipeline("translation_en_to_de",
                      model="Helsinki-NLP/opus-mt-en-de")
outputs = translator(text, clean_up_tokenization_spaces=True, min_length=100)
print(outputs[0]['translation_text'])

Sehr geehrter Amazon, letzte Woche habe ich eine Optimus Prime Action Figur aus
Ihrem Online-Shop in Deutschland bestellt. Leider, als ich das Paket öffnete,
entdeckte ich zu meinem Entsetzen, dass ich stattdessen eine Action Figur von
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Megatron geschickt worden war! Als lebenslanger Feind der Decepticons, Ich
hoffe, Sie können mein Dilemma verstehen. Um das Problem zu lösen, Ich fordere
einen Austausch von Megatron für die Optimus Prime Figur habe ich bestellt.
Anbei sind Kopien meiner Aufzeichnungen über diesen Kauf. Ich erwarte, bald von
Ihnen zu hören. Aufrichtig, Bumblebee.

Again, the model produced a very good translation that correctly uses German’s for‐
mal pronouns, like “Ihrem” and “Sie.” Here we’ve also shown how you can override
the default model in the pipeline to pick the best one for your application—and you
can find models for thousands of language pairs on the Hugging Face Hub. Before we
take a step back and look at the whole Hugging Face ecosystem, let’s examine one last
application.

Text Generation
Let’s say you would like to be able to provide faster replies to customer feedback by
having access to an autocomplete function. With a text generation model you can do
this as follows:

generator = pipeline("text-generation")
response = "Dear Bumblebee, I am sorry to hear that your order was mixed up."
prompt = text + "\n\nCustomer service response:\n" + response
outputs = generator(prompt, max_length=200)
print(outputs[0]['generated_text'])

Dear Amazon, last week I ordered an Optimus Prime action figure from your online
store in Germany. Unfortunately, when I opened the package, I discovered to my
horror that I had been sent an action figure of Megatron instead! As a lifelong
enemy of the Decepticons, I hope you can understand my dilemma. To resolve the
issue, I demand an exchange of Megatron for the Optimus Prime figure I ordered.
Enclosed are copies of my records concerning this purchase. I expect to hear
from you soon. Sincerely, Bumblebee.

Customer service response:
Dear Bumblebee, I am sorry to hear that your order was mixed up. The order was
completely mislabeled, which is very common in our online store, but I can
appreciate it because it was my understanding from this site and our customer
service of the previous day that your order was not made correct in our mind and
that we are in a process of resolving this matter. We can assure you that your
order

OK, maybe we wouldn’t want to use this completion to calm Bumblebee down, but
you get the general idea.

Now that you’ve seen a few cool applications of transformer models, you might be
wondering where the training happens. All of the models that we’ve used in this chap‐
ter are publicly available and already fine-tuned for the task at hand. In general, how‐
ever, you’ll want to fine-tune models on your own data, and in the following chapters
you will learn how to do just that.
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But training a model is just a small piece of any NLP project—being able to efficiently
process data, share results with colleagues, and make your work reproducible are key
components too. Fortunately,  Transformers is surrounded by a big ecosystem of
useful tools that support much of the modern machine learning workflow. Let’s take a
look.

The Hugging Face Ecosystem
What started with  Transformers has quickly grown into a whole ecosystem con‐
sisting of many libraries and tools to accelerate your NLP and machine learning
projects. The Hugging Face ecosystem consists of mainly two parts: a family of libra‐
ries and the Hub, as shown in Figure 1-9. The libraries provide the code while the
Hub provides the pretrained model weights, datasets, scripts for the evaluation met‐
rics, and more. In this section we’ll have a brief look at the various components. We’ll
skip  Transformers, as we’ve already discussed it and we will see a lot more of it
throughout the course of the book.

Figure 1-9. An overview of the Hugging Face ecosystem
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The Hugging Face Hub
As outlined earlier, transfer learning is one of the key factors driving the success of
transformers because it makes it possible to reuse pretrained models for new tasks.
Consequently, it is crucial to be able to load pretrained models quickly and run
experiments with them.

The Hugging Face Hub hosts over 20,000 freely available models. As shown in
Figure 1-10, there are filters for tasks, frameworks, datasets, and more that are
designed to help you navigate the Hub and quickly find promising candidates. As
we’ve seen with the pipelines, loading a promising model in your code is then literally
just one line of code away. This makes experimenting with a wide range of models
simple, and allows you to focus on the domain-specific parts of your project.

Figure 1-10. The Models page of the Hugging Face Hub, showing filters on the left and a
list of models on the right

In addition to model weights, the Hub also hosts datasets and scripts for computing
metrics, which let you reproduce published results or leverage additional data for
your application.

The Hub also provides model and dataset cards to document the contents of models
and datasets and help you make an informed decision about whether they’re the right
ones for you. One of the coolest features of the Hub is that you can try out any model
directly through the various task-specific interactive widgets as shown in Figure 1-11.
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12 Rust is a high-performance programming language.

Figure 1-11. An example model card from the Hugging Face Hub: the inference widget,
which allows you to interact with the model, is shown on the right

Let’s continue our tour with  Tokenizers.

PyTorch and TensorFlow also offer hubs of their own and are
worth checking out if a particular model or dataset is not available
on the Hugging Face Hub.

Hugging Face Tokenizers
Behind each of the pipeline examples that we’ve seen in this chapter is a tokenization
step that splits the raw text into smaller pieces called tokens. We’ll see how this works
in detail in Chapter 2, but for now it’s enough to understand that tokens may be
words, parts of words, or just characters like punctuation. Transformer models are
trained on numerical representations of these tokens, so getting this step right is
pretty important for the whole NLP project!

 Tokenizers provides many tokenization strategies and is extremely fast at tokeniz‐
ing text thanks to its Rust backend.12 It also takes care of all the pre- and postprocess‐
ing steps, such as normalizing the inputs and transforming the model outputs to the
required format. With  Tokenizers, we can load a tokenizer in the same way we can
load pretrained model weights with  Transformers.
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We need a dataset and metrics to train and evaluate models, so let’s take a look at 
 Datasets, which is in charge of that aspect.

Hugging Face Datasets
Loading, processing, and storing datasets can be a cumbersome process, especially
when the datasets get too large to fit in your laptop’s RAM. In addition, you usually
need to implement various scripts to download the data and transform it into a stan‐
dard format.

 Datasets simplifies this process by providing a standard interface for thousands of
datasets that can be found on the Hub. It also provides smart caching (so you don’t
have to redo your preprocessing each time you run your code) and avoids RAM limi‐
tations by leveraging a special mechanism called memory mapping that stores the
contents of a file in virtual memory and enables multiple processes to modify a file
more efficiently. The library is also interoperable with popular frameworks like Pan‐
das and NumPy, so you don’t have to leave the comfort of your favorite data wran‐
gling tools.

Having a good dataset and powerful model is worthless, however, if you can’t reliably
measure the performance. Unfortunately, classic NLP metrics come with many differ‐
ent implementations that can vary slightly and lead to deceptive results. By providing
the scripts for many metrics,  Datasets helps make experiments more reproducible
and the results more trustworthy.

With the  Transformers,  Tokenizers, and  Datasets libraries we have every‐
thing we need to train our very own transformer models! However, as we’ll see in
Chapter 10 there are situations where we need fine-grained control over the training
loop. That’s where the last library of the ecosystem comes into play:  Accelerate.

Hugging Face Accelerate
If you’ve ever had to write your own training script in PyTorch, chances are that
you’ve had some headaches when trying to port the code that runs on your laptop to
the code that runs on your organization’s cluster.  Accelerate adds a layer of abstrac‐
tion to your normal training loops that takes care of all the custom logic necessary for
the training infrastructure. This literally accelerates your workflow by simplifying the
change of infrastructure when necessary.

This sums up the core components of Hugging Face’s open source ecosystem. But
before wrapping up this chapter, let’s take a look at a few of the common challenges
that come with trying to deploy transformers in the real world.
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Main Challenges with Transformers
In this chapter we’ve gotten a glimpse of the wide range of NLP tasks that can be tack‐
led with transformer models. Reading the media headlines, it can sometimes sound
like their capabilities are limitless. However, despite their usefulness, transformers are
far from being a silver bullet. Here are a few challenges associated with them that we
will explore throughout the book:

Language
NLP research is dominated by the English language. There are several models for
other languages, but it is harder to find pretrained models for rare or low-
resource languages. In Chapter 4, we’ll explore multilingual transformers and
their ability to perform zero-shot cross-lingual transfer.

Data availability
Although we can use transfer learning to dramatically reduce the amount of
labeled training data our models need, it is still a lot compared to how much a
human needs to perform the task. Tackling scenarios where you have little to no
labeled data is the subject of Chapter 9.

Working with long documents
Self-attention works extremely well on paragraph-long texts, but it becomes very
expensive when we move to longer texts like whole documents. Approaches to
mitigate this are discussed in Chapter 11.

Opacity
As with other deep learning models, transformers are to a large extent opaque. It
is hard or impossible to unravel “why” a model made a certain prediction. This is
an especially hard challenge when these models are deployed to make critical
decisions. We’ll explore some ways to probe the errors of transformer models in
Chapters 2 and 4.

Bias
Transformer models are predominantly pretrained on text data from the internet.
This imprints all the biases that are present in the data into the models. Making
sure that these are neither racist, sexist, or worse is a challenging task. We discuss
some of these issues in more detail in Chapter 10.

Although daunting, many of these challenges can be overcome. As well as in the spe‐
cific chapters mentioned, we will touch on these topics in almost every chapter ahead.
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Conclusion
Hopefully, by now you are excited to learn how to start training and integrating these
versatile models into your own applications! You’ve seen in this chapter that with just
a few lines of code you can use state-of-the-art models for classification, named entity
recognition, question answering, translation, and summarization, but this is really
just the “tip of the iceberg.”

In the following chapters you will learn how to adapt transformers to a wide range of
use cases, such as building a text classifier, or a lightweight model for production, or
even training a language model from scratch. We’ll be taking a hands-on approach,
which means that for every concept covered there will be accompanying code that
you can run on Google Colab or your own GPU machine.

Now that we’re armed with the basic concepts behind transformers, it’s time to get
our hands dirty with our first application: text classification. That’s the topic of the
next chapter!
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CHAPTER 2

Text Classification

Text classification is one of the most common tasks in NLP; it can be used for a broad
range of applications, such as tagging customer feedback into categories or routing
support tickets according to their language. Chances are that your email program’s
spam filter is using text classification to protect your inbox from a deluge of unwan‐
ted junk!

Another common type of text classification is sentiment analysis, which (as we saw in
Chapter 1) aims to identify the polarity of a given text. For example, a company like
Tesla might analyze Twitter posts like the one in Figure 2-1 to determine whether
people like its new car roofs or not.

Figure 2-1. Analyzing Twitter content can yield useful feedback from customers (cour‐
tesy of Aditya Veluri)
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1 V. Sanh et al., “DistilBERT, a Distilled Version of BERT: Smaller, Faster, Cheaper and Lighter”, (2019).
2 Optimus Prime is the leader of a race of robots in the popular Transformers franchise for children (and for

those who are young at heart!).
3 E. Saravia et al., “CARER: Contextualized Affect Representations for Emotion Recognition,” Proceedings of the

2018 Conference on Empirical Methods in Natural Language Processing (Oct–Nov 2018): 3687–3697, http://
dx.doi.org/10.18653/v1/D18-1404.

Now imagine that you are a data scientist who needs to build a system that can auto‐
matically identify emotional states such as “anger” or “joy” that people express about
your company’s product on Twitter. In this chapter, we’ll tackle this task using a var‐
iant of BERT called DistilBERT.1 The main advantage of this model is that it achieves
comparable performance to BERT, while being significantly smaller and more effi‐
cient. This enables us to train a classifier in a few minutes, and if you want to train a
larger BERT model you can simply change the checkpoint of the pretrained model. A
checkpoint corresponds to the set of weights that are loaded into a given transformer
architecture.

This will also be our first encounter with three of the core libraries from the Hugging
Face ecosystem:  Datasets,  Tokenizers, and  Transformers. As shown in
Figure 2-2, these libraries will allow us to quickly go from raw text to a fine-tuned
model that can be used for inference on new tweets. So, in the spirit of Optimus
Prime, let’s dive in, “transform, and roll out!”2

Figure 2-2. A typical pipeline for training transformer models with the  Datasets, 
Tokenizers, and  Transformers libraries

The Dataset
To build our emotion detector we’ll use a great dataset from an article that explored
how emotions are represented in English Twitter messages.3 Unlike most sentiment
analysis datasets that involve just “positive” and “negative” polarities, this dataset con‐
tains six basic emotions: anger, disgust, fear, joy, sadness, and surprise. Given a tweet,
our task will be to train a model that can classify it into one of these emotions.
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A First Look at Hugging Face Datasets
We will use  Datasets to download the data from the Hugging Face Hub. We can
use the list_datasets() function to see what datasets are available on the Hub:

from datasets import list_datasets

all_datasets = list_datasets()
print(f"There are {len(all_datasets)} datasets currently available on the Hub")
print(f"The first 10 are: {all_datasets[:10]}")

There are 1753 datasets currently available on the Hub
The first 10 are: ['acronym_identification', 'ade_corpus_v2', 'adversarial_qa',
'aeslc', 'afrikaans_ner_corpus', 'ag_news', 'ai2_arc', 'air_dialogue',
'ajgt_twitter_ar', 'allegro_reviews']

We see that each dataset is given a name, so let’s load the emotion dataset with the
load_dataset() function:

from datasets import load_dataset

emotions = load_dataset("emotion")

If we look inside our emotions object:

emotions

DatasetDict({
    train: Dataset({
        features: ['text', 'label'],
        num_rows: 16000
    })
    validation: Dataset({
        features: ['text', 'label'],
        num_rows: 2000
    })
    test: Dataset({
        features: ['text', 'label'],
        num_rows: 2000
    })
})

we see it is similar to a Python dictionary, with each key corresponding to a different
split. And we can use the usual dictionary syntax to access an individual split:

train_ds = emotions["train"]
train_ds

Dataset({
    features: ['text', 'label'],
    num_rows: 16000
})
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which returns an instance of the Dataset class. The Dataset object is one of the core
data structures in  Datasets, and we’ll be exploring many of its features throughout
the course of this book. For starters, it behaves like an ordinary Python array or list,
so we can query its length:

len(train_ds)

16000

or access a single example by its index:

train_ds[0]

{'label': 0, 'text': 'i didnt feel humiliated'}

Here we see that a single row is represented as a dictionary, where the keys corre‐
spond to the column names:

train_ds.column_names

['text', 'label']

and the values are the tweet and the emotion. This reflects the fact that  Datasets is
based on Apache Arrow, which defines a typed columnar format that is more memory
efficient than native Python. We can see what data types are being used under the
hood by accessing the features attribute of a Dataset object:

print(train_ds.features)

{'text': Value(dtype='string', id=None), 'label': ClassLabel(num_classes=6,
names=['sadness', 'joy', 'love', 'anger', 'fear', 'surprise'], names_file=None,
id=None)}

In this case, the data type of the text column is string, while the label column is a
special ClassLabel object that contains information about the class names and their
mapping to integers. We can also access several rows with a slice:

print(train_ds[:5])

{'text': ['i didnt feel humiliated', 'i can go from feeling so hopeless to so
damned hopeful just from being around someone who cares and is awake', 'im
grabbing a minute to post i feel greedy wrong', 'i am ever feeling nostalgic
about the fireplace i will know that it is still on the property', 'i am feeling
grouchy'], 'label': [0, 0, 3, 2, 3]}

Note that in this case, the dictionary values are now lists instead of individual ele‐
ments. We can also get the full column by name:

print(train_ds["text"][:5])

['i didnt feel humiliated', 'i can go from feeling so hopeless to so damned
hopeful just from being around someone who cares and is awake', 'im grabbing a
minute to post i feel greedy wrong', 'i am ever feeling nostalgic about the
fireplace i will know that it is still on the property', 'i am feeling grouchy']

24 | Chapter 2: Text Classification

https://arrow.apache.org


Now that we’ve seen how to load and inspect data with  Datasets, let’s do a few
checks about the content of our tweets.

What If My Dataset Is Not on the Hub?
We’ll be using the Hugging Face Hub to download datasets for most of the examples
in this book. But in many cases, you’ll find yourself working with data that is either
stored on your laptop or on a remote server in your organization.  Datasets pro‐
vides several loading scripts to handle local and remote datasets. Examples for the
most common data formats are shown in Table 2-1.

Table 2-1. How to load datasets in various formats

Data format Loading script Example
CSV csv load_dataset("csv", data_files="my_file.csv")

Text text load_dataset("text", data_files="my_file.txt")

JSON json load_dataset("json", data_files="my_file.jsonl")

As you can see, for each data format, we just need to pass the relevant loading script
to the load_dataset() function, along with a data_files argument that specifies the
path or URL to one or more files. For example, the source files for the emotion dataset
are actually hosted on Dropbox, so an alternative way to load the dataset is to first
download one of the splits:

dataset_url = "https://www.dropbox.com/s/1pzkadrvffbqw6o/train.txt"
!wget {dataset_url}

If you’re wondering why there’s a ! character in the preceding shell command, that’s
because we’re running the commands in a Jupyter notebook. Simply remove the pre‐
fix if you want to download and unzip the dataset within a terminal. Now, if we peek
at the first row of the train.txt file:

!head -n 1 train.txt

i didnt feel humiliated;sadness

we can see that here are no column headers and each tweet and emotion are separated
by a semicolon. Nevertheless, this is quite similar to a CSV file, so we can load the
dataset locally by using the csv script and pointing the data_files argument to the
train.txt file:

emotions_local = load_dataset("csv", data_files="train.txt", sep=";",
                              names=["text", "label"])

Here we’ve also specified the type of delimiter and the names of the columns. An even
simpler approach is to just point the data_files argument to the URL itself:
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dataset_url = "https://www.dropbox.com/s/1pzkadrvffbqw6o/train.txt?dl=1"
emotions_remote = load_dataset("csv", data_files=dataset_url, sep=";",
                               names=["text", "label"])

which will automatically download and cache the dataset for you. As you can see, the
load_dataset() function is very versatile. We recommend checking out the  Data‐
sets documentation to get a complete overview.

From Datasets to DataFrames
Although  Datasets provides a lot of low-level functionality to slice and dice our
data, it is often convenient to convert a Dataset object to a Pandas DataFrame so we
can access high-level APIs for data visualization. To enable the conversion,  Data‐
sets provides a set_format() method that allows us to change the output format of
the Dataset. Note that this does not change the underlying data format (which is an
Arrow table), and you can switch to another format later if needed:

import pandas as pd

emotions.set_format(type="pandas")
df = emotions["train"][:]
df.head()

text label

0 i didnt feel humiliated 0

1 i can go from feeling so hopeless to so damned... 0

2 im grabbing a minute to post i feel greedy wrong 3

3 i am ever feeling nostalgic about the fireplac... 2

4 i am feeling grouchy 3

As you can see, the column headers have been preserved and the first few rows match
our previous views of the data. However, the labels are represented as integers, so let’s
use the int2str() method of the label feature to create a new column in our
DataFrame with the corresponding label names:

def label_int2str(row):
    return emotions["train"].features["label"].int2str(row)

df["label_name"] = df["label"].apply(label_int2str)
df.head()

text label label_name

0 i didnt feel humiliated 0 sadness

1 i can go from feeling so hopeless to so damned... 0 sadness
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text label label_name

2 im grabbing a minute to post i feel greedy wrong 3 anger

3 i am ever feeling nostalgic about the fireplac... 2 love

4 i am feeling grouchy 3 anger

Before diving into building a classifier, let’s take a closer look at the dataset. As Andrej
Karpathy notes in his famous blog post “A Recipe for Training Neural Networks”,
becoming “one with the data” is an essential step for training great models!

Looking at the Class Distribution
Whenever you are working on text classification problems, it is a good idea to exam‐
ine the distribution of examples across the classes. A dataset with a skewed class dis‐
tribution might require a different treatment in terms of the training loss and
evaluation metrics than a balanced one.

With Pandas and Matplotlib, we can quickly visualize the class distribution as follows:

import matplotlib.pyplot as plt

df["label_name"].value_counts(ascending=True).plot.barh()
plt.title("Frequency of Classes")
plt.show()

In this case, we can see that the dataset is heavily imbalanced; the joy and sadness
classes appear frequently, whereas love and surprise are about 5–10 times rarer.
There are several ways to deal with imbalanced data, including:
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• Randomly oversample the minority class.
• Randomly undersample the majority class.
• Gather more labeled data from the underrepresented classes.

To keep things simple in this chapter, we’ll work with the raw, unbalanced class fre‐
quencies. If you want to learn more about these sampling techniques, we recommend
checking out the Imbalanced-learn library. Just make sure that you don’t apply sam‐
pling methods before creating your train/test splits, or you’ll get plenty of leakage
between them!

Now that we’ve looked at the classes, let’s take a look at the tweets themselves.

How Long Are Our Tweets?
Transformer models have a maximum input sequence length that is referred to as the
maximum context size. For applications using DistilBERT, the maximum context size
is 512 tokens, which amounts to a few paragraphs of text. As we’ll see in the next sec‐
tion, a token is an atomic piece of text; for now, we’ll treat a token as a single word.
We can get a rough estimate of tweet lengths per emotion by looking at the distribu‐
tion of words per tweet:

df["Words Per Tweet"] = df["text"].str.split().apply(len)
df.boxplot("Words Per Tweet", by="label_name", grid=False,
          showfliers=False, color="black")
plt.suptitle("")
plt.xlabel("")
plt.show()
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From the plot we see that for each emotion, most tweets are around 15 words long
and the longest tweets are well below DistilBERT’s maximum context size. Texts that
are longer than a model’s context size need to be truncated, which can lead to a loss in
performance if the truncated text contains crucial information; in this case, it looks
like that won’t be an issue.

Let’s now figure out how we can convert these raw texts into a format suitable for 
 Transformers! While we’re at it, let’s also reset the output format of our dataset

since we don’t need the DataFrame format anymore:

emotions.reset_format()

From Text to Tokens
Transformer models like DistilBERT cannot receive raw strings as input; instead, they
assume the text has been tokenized and encoded as numerical vectors. Tokenization is
the step of breaking down a string into the atomic units used in the model. There are
several tokenization strategies one can adopt, and the optimal splitting of words into
subunits is usually learned from the corpus. Before looking at the tokenizer used for
DistilBERT, let’s consider two extreme cases: character and word tokenization.

Character Tokenization
The simplest tokenization scheme is to feed each character individually to the model.
In Python, str objects are really arrays under the hood, which allows us to quickly
implement character-level tokenization with just one line of code:

text = "Tokenizing text is a core task of NLP."
tokenized_text = list(text)
print(tokenized_text)

['T', 'o', 'k', 'e', 'n', 'i', 'z', 'i', 'n', 'g', ' ', 't', 'e', 'x', 't', ' ',
'i', 's', ' ', 'a', ' ', 'c', 'o', 'r', 'e', ' ', 't', 'a', 's', 'k', ' ', 'o',
'f', ' ', 'N', 'L', 'P', '.']

This is a good start, but we’re not done yet. Our model expects each character to be
converted to an integer, a process sometimes called numericalization. One simple way
to do this is by encoding each unique token (which are characters in this case) with a
unique integer:

token2idx = {ch: idx for idx, ch in enumerate(sorted(set(tokenized_text)))}
print(token2idx)

{' ': 0, '.': 1, 'L': 2, 'N': 3, 'P': 4, 'T': 5, 'a': 6, 'c': 7, 'e': 8, 'f': 9,
'g': 10, 'i': 11, 'k': 12, 'n': 13, 'o': 14, 'r': 15, 's': 16, 't': 17, 'x': 18,
'z': 19}

This gives us a mapping from each character in our vocabulary to a unique integer.
We can now use token2idx to transform the tokenized text to a list of integers:
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input_ids = [token2idx[token] for token in tokenized_text]
print(input_ids)

[5, 14, 12, 8, 13, 11, 19, 11, 13, 10, 0, 17, 8, 18, 17, 0, 11, 16, 0, 6, 0, 7,
14, 15, 8, 0, 17, 6, 16, 12, 0, 14, 9, 0, 3, 2, 4, 1]

Each token has now been mapped to a unique numerical identifier (hence the name
input_ids). The last step is to convert input_ids to a 2D tensor of one-hot vectors.
One-hot vectors are frequently used in machine learning to encode categorical data,
which can be either ordinal or nominal. For example, suppose we wanted to encode
the names of characters in the Transformers TV series. One way to do this would be
to map each name to a unique ID, as follows:

categorical_df = pd.DataFrame(
    {"Name": ["Bumblebee", "Optimus Prime", "Megatron"], "Label ID": [0,1,2]})
categorical_df

Name Label ID

0 Bumblebee 0

1 Optimus Prime 1

2 Megatron 2

The problem with this approach is that it creates a fictitious ordering between the
names, and neural networks are really good at learning these kinds of relationships.
So instead, we can create a new column for each category and assign a 1 where the
category is true, and a 0 otherwise. In Pandas, this can be implemented with the
get_dummies() function as follows:

pd.get_dummies(categorical_df["Name"])

Bumblebee Megatron Optimus Prime

0 1 0 0

1 0 0 1

2 0 1 0

The rows of this DataFrame are the one-hot vectors, which have a single “hot” entry
with a 1 and 0s everywhere else. Now, looking at our input_ids, we have a similar
problem: the elements create an ordinal scale. This means that adding or subtracting
two IDs is a meaningless operation, since the result is a new ID that represents
another random token.

On the other hand, the result of adding two one-hot encodings can easily be inter‐
preted: the two entries that are “hot” indicate that the corresponding tokens co-occur.
We can create the one-hot encodings in PyTorch by converting input_ids to a tensor
and applying the one_hot() function as follows:
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import torch
import torch.nn.functional as F

input_ids = torch.tensor(input_ids)
one_hot_encodings = F.one_hot(input_ids, num_classes=len(token2idx))
one_hot_encodings.shape

torch.Size([38, 20])

For each of the 38 input tokens we now have a one-hot vector with 20 dimensions,
since our vocabulary consists of 20 unique characters.

It’s important to always set num_classes in the one_hot() function
because otherwise the one-hot vectors may end up being shorter
than the length of the vocabulary (and need to be padded with
zeros manually). In TensorFlow, the equivalent function is
tf.one_hot(), where the depth argument plays the role of
num_classes.

By examining the first vector, we can verify that a 1 appears in the location indicated
by input_ids[0]:

print(f"Token: {tokenized_text[0]}")
print(f"Tensor index: {input_ids[0]}")
print(f"One-hot: {one_hot_encodings[0]}")

Token: T
Tensor index: 5
One-hot: tensor([0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])

From our simple example we can see that character-level tokenization ignores any
structure in the text and treats the whole string as a stream of characters. Although
this helps deal with misspellings and rare words, the main drawback is that linguistic
structures such as words need to be learned from the data. This requires significant
compute, memory, and data. For this reason, character tokenization is rarely used in
practice. Instead, some structure of the text is preserved during the tokenization step.
Word tokenization is a straightforward approach to achieve this, so let’s take a look at
how it works.

Word Tokenization
Instead of splitting the text into characters, we can split it into words and map each
word to an integer. Using words from the outset enables the model to skip the step of
learning words from characters, and thereby reduces the complexity of the training
process.
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4 GPT-2 is the successor of GPT, and it captivated the public’s attention with its impressive ability to generate
realistic text. We’ll explore GPT-2 in detail in Chapter 6.

One simple class of word tokenizers uses whitespace to tokenize the text. We can do
this by applying Python’s split() function directly on the raw text (just like we did to
measure the tweet lengths):

tokenized_text = text.split()
print(tokenized_text)

['Tokenizing', 'text', 'is', 'a', 'core', 'task', 'of', 'NLP.']

From here we can take the same steps we took for the character tokenizer to map
each word to an ID. However, we can already see one potential problem with this
tokenization scheme: punctuation is not accounted for, so NLP. is treated as a single
token. Given that words can include declinations, conjugations, or misspellings, the
size of the vocabulary can easily grow into the millions!

Some word tokenizers have extra rules for punctuation. One can
also apply stemming or lemmatization, which normalizes words to
their stem (e.g., “great”, “greater”, and “greatest” all become “great”),
at the expense of losing some information in the text.

Having a large vocabulary is a problem because it requires neural networks to have an
enormous number of parameters. To illustrate this, suppose we have 1 million unique
words and want to compress the 1-million-dimensional input vectors to 1-thousand-
dimensional vectors in the first layer of our neural network. This is a standard step in
most NLP architectures, and the resulting weight matrix of this first layer would con‐
tain 1 million × 1 thousand = 1 billion weights. This is already comparable to the
largest GPT-2 model,4 which has around 1.5 billion parameters in total!

Naturally, we want to avoid being so wasteful with our model parameters since mod‐
els are expensive to train, and larger models are more difficult to maintain. A com‐
mon approach is to limit the vocabulary and discard rare words by considering, say,
the 100,000 most common words in the corpus. Words that are not part of the
vocabulary are classified as “unknown” and mapped to a shared UNK token. This
means that we lose some potentially important information in the process of word
tokenization, since the model has no information about words associated with UNK.

Wouldn’t it be nice if there was a compromise between character and word tokeniza‐
tion that preserved all the input information and some of the input structure? There
is: subword tokenization.
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Subword Tokenization
The basic idea behind subword tokenization is to combine the best aspects of charac‐
ter and word tokenization. On the one hand, we want to split rare words into smaller
units to allow the model to deal with complex words and misspellings. On the other
hand, we want to keep frequent words as unique entities so that we can keep the
length of our inputs to a manageable size. The main distinguishing feature of
subword tokenization (as well as word tokenization) is that it is learned from the pre‐
training corpus using a mix of statistical rules and algorithms.

There are several subword tokenization algorithms that are commonly used in NLP,
but let’s start with WordPiece,5 which is used by the BERT and DistilBERT tokenizers.
The easiest way to understand how WordPiece works is to see it in action.  Trans‐
formers provides a convenient AutoTokenizer class that allows you to quickly load
the tokenizer associated with a pretrained model—we just call its from_pretrained()
method, providing the ID of a model on the Hub or a local file path. Let’s start by
loading the tokenizer for DistilBERT:

from transformers import AutoTokenizer

model_ckpt = "distilbert-base-uncased"
tokenizer = AutoTokenizer.from_pretrained(model_ckpt)

The AutoTokenizer class belongs to a larger set of “auto” classes whose job is to auto‐
matically retrieve the model’s configuration, pretrained weights, or vocabulary from
the name of the checkpoint. This allows you to quickly switch between models, but if
you wish to load the specific class manually you can do so as well. For example, we
could have loaded the DistilBERT tokenizer as follows:

from transformers import DistilBertTokenizer

distilbert_tokenizer = DistilBertTokenizer.from_pretrained(model_ckpt)

When you run the AutoTokenizer.from_pretrained() method
for the first time you will see a progress bar that shows which
parameters of the pretrained tokenizer are loaded from the Hug‐
ging Face Hub. When you run the code a second time, it will load
the tokenizer from the cache, usually at ~/.cache/huggingface.

Let’s examine how this tokenizer works by feeding it our simple “Tokenizing text is a
core task of NLP.” example text:
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encoded_text = tokenizer(text)
print(encoded_text)

{'input_ids': [101, 19204, 6026, 3793, 2003, 1037, 4563, 4708, 1997, 17953,
2361, 1012, 102], 'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}

Just as with character tokenization, we can see that the words have been mapped to
unique integers in the input_ids field. We’ll discuss the role of the attention_mask
field in the next section. Now that we have the input_ids, we can convert them back
into tokens by using the tokenizer’s convert_ids_to_tokens() method:

tokens = tokenizer.convert_ids_to_tokens(encoded_text.input_ids)
print(tokens)

['[CLS]', 'token', '##izing', 'text', 'is', 'a', 'core', 'task', 'of', 'nl',
'##p', '.', '[SEP]']

We can observe three things here. First, some special [CLS] and [SEP] tokens have
been added to the start and end of the sequence. These tokens differ from model to
model, but their main role is to indicate the start and end of a sequence. Second, the
tokens have each been lowercased, which is a feature of this particular checkpoint.
Finally, we can see that “tokenizing” and “NLP” have been split into two tokens,
which makes sense since they are not common words. The ## prefix in ##izing and
##p means that the preceding string is not whitespace; any token with this prefix
should be merged with the previous token when you convert the tokens back to a
string. The AutoTokenizer class has a convert_tokens_to_string() method for
doing just that, so let’s apply it to our tokens:

print(tokenizer.convert_tokens_to_string(tokens))

[CLS] tokenizing text is a core task of nlp. [SEP]

The AutoTokenizer class also has several attributes that provide information about
the tokenizer. For example, we can inspect the vocabulary size:

tokenizer.vocab_size

30522

and the corresponding model’s maximum context size:

tokenizer.model_max_length

512

Another interesting attribute to know about is the names of the fields that the model
expects in its forward pass:

tokenizer.model_input_names

['input_ids', 'attention_mask']

Now that we have a basic understanding of the tokenization process for a single
string, let’s see how we can tokenize the whole dataset!
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When using pretrained models, it is really important to make sure
that you use the same tokenizer that the model was trained with.
From the model’s perspective, switching the tokenizer is like shuf‐
fling the vocabulary. If everyone around you started swapping
random words like “house” for “cat,” you’d have a hard time under‐
standing what was going on too!

Tokenizing the Whole Dataset
To tokenize the whole corpus, we’ll use the map() method of our DatasetDict object.
We’ll encounter this method many times throughout this book, as it provides a con‐
venient way to apply a processing function to each element in a dataset. As we’ll soon
see, the map() method can also be used to create new rows and columns.

To get started, the first thing we need is a processing function to tokenize our exam‐
ples with:

def tokenize(batch):
    return tokenizer(batch["text"], padding=True, truncation=True)

This function applies the tokenizer to a batch of examples; padding=True will pad the
examples with zeros to the size of the longest one in a batch, and truncation=True
will truncate the examples to the model’s maximum context size. To see tokenize()
in action, let’s pass a batch of two examples from the training set:

print(tokenize(emotions["train"][:2]))

{'input_ids': [[101, 1045, 2134, 2102, 2514, 26608, 102, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0], [101, 1045, 2064, 2175, 2013, 3110, 2061, 20625, 2000,
2061, 9636, 17772, 2074, 2013, 2108, 2105, 2619, 2040, 14977, 1998, 2003, 8300,
102]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1]]}

Here we can see the result of padding: the first element of input_ids is shorter than
the second, so zeros have been added to that element to make them the same length.
These zeros have a corresponding [PAD] token in the vocabulary, and the set of spe‐
cial tokens also includes the [CLS] and [SEP] tokens that we encountered earlier:

Special Token [PAD] [UNK] [CLS] [SEP] [MASK]

Special Token ID 0 100 101 102 103

Also note that in addition to returning the encoded tweets as input_ids, the token‐
izer returns a list of attention_mask arrays. This is because we do not want the
model to get confused by the additional padding tokens: the attention mask allows
the model to ignore the padded parts of the input. Figure 2-3 provides a visual
explanation of how the input IDs and attention masks are padded.
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Figure 2-3. For each batch, the input sequences are padded to the maximum sequence
length in the batch; the attention mask is used in the model to ignore the padded areas of
the input tensors

Once we’ve defined a processing function, we can apply it across all the splits in the
corpus in a single line of code:

emotions_encoded = emotions.map(tokenize, batched=True, batch_size=None)

By default, the map() method operates individually on every example in the corpus,
so setting batched=True will encode the tweets in batches. Because we’ve set
batch_size=None, our tokenize() function will be applied on the full dataset as a
single batch. This ensures that the input tensors and attention masks have the same
shape globally, and we can see that this operation has added new input_ids and
attention_mask columns to the dataset:

print(emotions_encoded["train"].column_names)

['attention_mask', 'input_ids', 'label', 'text']

In later chapters, we’ll see how data collators can be used to dynam‐
ically pad the tensors in each batch. Padding globally will come in
handy in the next section, where we extract a feature matrix from
the whole corpus.

Training a Text Classifier
As discussed in Chapter 1, models like DistilBERT are pretrained to predict masked
words in a sequence of text. However, we can’t use these language models directly for
text classification; we need to modify them slightly. To understand what modifica‐
tions are necessary, let’s take a look at the architecture of an encoder-based model like
DistilBERT, which is depicted in Figure 2-4.
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Figure 2-4. The architecture used for sequence classification with an encoder-based
transformer; it consists of the model’s pretrained body combined with a custom classifi‐
cation head

First, the text is tokenized and represented as one-hot vectors called token encodings.
The size of the tokenizer vocabulary determines the dimension of the token encod‐
ings, and it usually consists of 20k–200k unique tokens. Next, these token encodings
are converted to token embeddings, which are vectors living in a lower-dimensional
space. The token embeddings are then passed through the encoder block layers to
yield a hidden state for each input token. For the pretraining objective of language
modeling,6 each hidden state is fed to a layer that predicts the masked input tokens.
For the classification task, we replace the language modeling layer with a classifica‐
tion layer.

In practice, PyTorch skips the step of creating one-hot vectors for
token encodings because multiplying a matrix with a one-hot vec‐
tor is the same as selecting a column from the matrix. This can be
done directly by getting the column with the token ID from the
matrix. We’ll see this in Chapter 3 when we use the nn.Embedding
class.

We have two options to train such a model on our Twitter dataset:

Feature extraction
We use the hidden states as features and just train a classifier on them, without
modifying the pretrained model.
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Fine-tuning
We train the whole model end-to-end, which also updates the parameters of the
pretrained model.

In the following sections we explore both options for DistilBERT and examine their
trade-offs.

Transformers as Feature Extractors
Using a transformer as a feature extractor is fairly simple. As shown in Figure 2-5, we
freeze the body’s weights during training and use the hidden states as features for the
classifier. The advantage of this approach is that we can quickly train a small or shal‐
low model. Such a model could be a neural classification layer or a method that does
not rely on gradients, such as a random forest. This method is especially convenient if
GPUs are unavailable, since the hidden states only need to be precomputed once.

Figure 2-5. In the feature-based approach, the DistilBERT model is frozen and just pro‐
vides features for a classifier

Using pretrained models

We will use another convenient auto class from  Transformers called AutoModel.
Similar to the AutoTokenizer class, AutoModel has a from_pretrained() method to
load the weights of a pretrained model. Let’s use this method to load the DistilBERT
checkpoint:

from transformers import AutoModel

model_ckpt = "distilbert-base-uncased"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = AutoModel.from_pretrained(model_ckpt).to(device)

Here we’ve used PyTorch to check whether a GPU is available or not, and then
chained the PyTorch nn.Module.to() method to the model loader. This ensures that
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the model will run on the GPU if we have one. If not, the model will run on the CPU,
which can be considerably slower.

The AutoModel class converts the token encodings to embeddings, and then feeds
them through the encoder stack to return the hidden states. Let’s take a look at how
we can extract these states from our corpus.

Interoperability Between Frameworks
Although the code in this book is mostly written in PyTorch,  Transformers pro‐
vides tight interoperability with TensorFlow and JAX. This means that you only need
to change a few lines of code to load a pretrained model in your favorite deep learn‐
ing framework! For example, we can load DistilBERT in TensorFlow by using the
TFAutoModel class as follows:

from transformers import TFAutoModel

tf_model = TFAutoModel.from_pretrained(model_ckpt)

This interoperability is especially useful when a model is only released in one frame‐
work, but you’d like to use it in another. For example, the XLM-RoBERTa model that
we’ll encounter in Chapter 4 only has PyTorch weights, so if you try to load it in
TensorFlow as we did before:

tf_xlmr = TFAutoModel.from_pretrained("xlm-roberta-base")

you’ll get an error. In these cases, you can specify a from_pt=True argument to the
TfAutoModel.from_pretrained() function, and the library will automatically down‐
load and convert the PyTorch weights for you:

tf_xlmr = TFAutoModel.from_pretrained("xlm-roberta-base", from_pt=True)

As you can see, it is very simple to switch between frameworks in  Transformers! In
most cases, you can just add a “TF” prefix to the classes and you’ll get the equivalent
TensorFlow 2.0 classes. When we use the "pt" string (e.g., in the following section),
which is short for PyTorch, just replace it with "tf", which is short for TensorFlow.

Extracting the last hidden states
To warm up, let’s retrieve the last hidden states for a single string. The first thing we
need to do is encode the string and convert the tokens to PyTorch tensors. This can
be done by providing the return_tensors="pt" argument to the tokenizer as follows:

text = "this is a test"
inputs = tokenizer(text, return_tensors="pt")
print(f"Input tensor shape: {inputs['input_ids'].size()}")

Input tensor shape: torch.Size([1, 6])
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As we can see, the resulting tensor has the shape [batch_size, n_tokens]. Now that
we have the encodings as a tensor, the final step is to place them on the same device
as the model and pass the inputs as follows:

inputs = {k:v.to(device) for k,v in inputs.items()}
with torch.no_grad():
    outputs = model(**inputs)
print(outputs)

BaseModelOutput(last_hidden_state=tensor([[[-0.1565, -0.1862,  0.0528,  ...,
-0.1188,  0.0662,  0.5470],
         [-0.3575, -0.6484, -0.0618,  ..., -0.3040,  0.3508,  0.5221],
         [-0.2772, -0.4459,  0.1818,  ..., -0.0948, -0.0076,  0.9958],
         [-0.2841, -0.3917,  0.3753,  ..., -0.2151, -0.1173,  1.0526],
         [ 0.2661, -0.5094, -0.3180,  ..., -0.4203,  0.0144, -0.2149],
         [ 0.9441,  0.0112, -0.4714,  ...,  0.1439, -0.7288, -0.1619]]],
       device='cuda:0'), hidden_states=None, attentions=None)

Here we’ve used the torch.no_grad() context manager to disable the automatic cal‐
culation of the gradient. This is useful for inference since it reduces the memory foot‐
print of the computations. Depending on the model configuration, the output can
contain several objects, such as the hidden states, losses, or attentions, arranged in a
class similar to a namedtuple in Python. In our example, the model output is an
instance of BaseModelOutput, and we can simply access its attributes by name. The
current model returns only one attribute, which is the last hidden state, so let’s exam‐
ine its shape:

outputs.last_hidden_state.size()

torch.Size([1, 6, 768])

Looking at the hidden state tensor, we see that it has the shape [batch_size,
n_tokens, hidden_dim]. In other words, a 768-dimensional vector is returned for
each of the 6 input tokens. For classification tasks, it is common practice to just use
the hidden state associated with the [CLS] token as the input feature. Since this token
appears at the start of each sequence, we can extract it by simply indexing into
outputs.last_hidden_state as follows:

outputs.last_hidden_state[:,0].size()

torch.Size([1, 768])

Now we know how to get the last hidden state for a single string; let’s do the same for
the whole dataset by creating a new hidden_state column that stores all these vec‐
tors. As we did with the tokenizer, we’ll use the map() method of DatasetDict to
extract all the hidden states in one go. The first thing we need to do is wrap the previ‐
ous steps in a processing function:

def extract_hidden_states(batch):
    # Place model inputs on the GPU
    inputs = {k:v.to(device) for k,v in batch.items()
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              if k in tokenizer.model_input_names}
    # Extract last hidden states
    with torch.no_grad():
        last_hidden_state = model(**inputs).last_hidden_state
    # Return vector for [CLS] token
    return {"hidden_state": last_hidden_state[:,0].cpu().numpy()}

The only difference between this function and our previous logic is the final step
where we place the final hidden state back on the CPU as a NumPy array. The map()
method requires the processing function to return Python or NumPy objects when
we’re using batched inputs.

Since our model expects tensors as inputs, the next thing to do is convert the
input_ids and attention_mask columns to the "torch" format, as follows:

emotions_encoded.set_format("torch",
                            columns=["input_ids", "attention_mask", "label"])

We can then go ahead and extract the hidden states across all splits in one go:

emotions_hidden = emotions_encoded.map(extract_hidden_states, batched=True)

Notice that we did not set batch_size=None in this case, which means the default
batch_size=1000 is used instead. As expected, applying the extract_ hidden_

states() function has added a new hidden_state column to our dataset:

emotions_hidden["train"].column_names

['attention_mask', 'hidden_state', 'input_ids', 'label', 'text']

Now that we have the hidden states associated with each tweet, the next step is to
train a classifier on them. To do that, we’ll need a feature matrix—let’s take a look.

Creating a feature matrix
The preprocessed dataset now contains all the information we need to train a classi‐
fier on it. We will use the hidden states as input features and the labels as targets. We
can easily create the corresponding arrays in the well-known Scikit-learn format as
follows:

import numpy as np

X_train = np.array(emotions_hidden["train"]["hidden_state"])
X_valid = np.array(emotions_hidden["validation"]["hidden_state"])
y_train = np.array(emotions_hidden["train"]["label"])
y_valid = np.array(emotions_hidden["validation"]["label"])
X_train.shape, X_valid.shape

((16000, 768), (2000, 768))

Before we train a model on the hidden states, it’s good practice to perform a quick
check to ensure that they provide a useful representation of the emotions we want to
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classify. In the next section, we’ll see how visualizing the features provides a fast way
to achieve this.

Visualizing the training set
Since visualizing the hidden states in 768 dimensions is tricky to say the least, we’ll
use the powerful UMAP algorithm to project the vectors down to 2D.7 Since UMAP
works best when the features are scaled to lie in the [0,1] interval, we’ll first apply a
MinMaxScaler and then use the UMAP implementation from the umap-learn library
to reduce the hidden states:

from umap import UMAP
from sklearn.preprocessing import MinMaxScaler

# Scale features to [0,1] range
X_scaled = MinMaxScaler().fit_transform(X_train)
# Initialize and fit UMAP
mapper = UMAP(n_components=2, metric="cosine").fit(X_scaled)
# Create a DataFrame of 2D embeddings
df_emb = pd.DataFrame(mapper.embedding_, columns=["X", "Y"])
df_emb["label"] = y_train
df_emb.head()

X Y label

0 4.358075 6.140816 0

1 -3.134567 5.329446 0

2 5.152230 2.732643 3

3 -2.519018 3.067250 2

4 -3.364520 3.356613 3

The result is an array with the same number of training samples, but with only 2 fea‐
tures instead of the 768 we started with! Let’s investigate the compressed data a little
bit further and plot the density of points for each category separately:

fig, axes = plt.subplots(2, 3, figsize=(7,5))
axes = axes.flatten()
cmaps = ["Greys", "Blues", "Oranges", "Reds", "Purples", "Greens"]
labels = emotions["train"].features["label"].names

for i, (label, cmap) in enumerate(zip(labels, cmaps)):
    df_emb_sub = df_emb.query(f"label == {i}")
    axes[i].hexbin(df_emb_sub["X"], df_emb_sub["Y"], cmap=cmap,
                   gridsize=20, linewidths=(0,))
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    axes[i].set_title(label)
    axes[i].set_xticks([]), axes[i].set_yticks([])

plt.tight_layout()
plt.show()

These are only projections onto a lower-dimensional space. Just
because some categories overlap does not mean that they are not
separable in the original space. Conversely, if they are separable in
the projected space they will be separable in the original space.

From this plot we can see some clear patterns: the negative feelings such as sadness,
anger, and fear all occupy similar regions with slightly varying distributions. On the
other hand, joy and love are well separated from the negative emotions and also
share a similar space. Finally, surprise is scattered all over the place. Although we
may have hoped for some separation, this is in no way guaranteed since the model
was not trained to know the difference between these emotions. It only learned them
implicitly by guessing the masked words in texts.

Now that we’ve gained some insight into the features of our dataset, let’s finally train a
model on it!

Training a simple classifier
We’ve seen that the hidden states are somewhat different between the emotions,
although for several of them there is no obvious boundary. Let’s use these hidden
states to train a logistic regression model with Scikit-learn. Training such a simple
model is fast and does not require a GPU:
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from sklearn.linear_model import LogisticRegression

# We increase `max_iter` to guarantee convergence
lr_clf = LogisticRegression(max_iter=3000)
lr_clf.fit(X_train, y_train)
lr_clf.score(X_valid, y_valid)

0.633

Looking at the accuracy, it might appear that our model is just a bit better than ran‐
dom—but since we are dealing with an unbalanced multiclass dataset, it’s actually sig‐
nificantly better. We can examine whether our model is any good by comparing it
against a simple baseline. In Scikit-learn there is a DummyClassifier that can be used
to build a classifier with simple heuristics such as always choosing the majority class
or always drawing a random class. In this case the best-performing heuristic is to
always choose the most frequent class, which yields an accuracy of about 35%:

from sklearn.dummy import DummyClassifier

dummy_clf = DummyClassifier(strategy="most_frequent")
dummy_clf.fit(X_train, y_train)
dummy_clf.score(X_valid, y_valid)

0.352

So, our simple classifier with DistilBERT embeddings is significantly better than our
baseline. We can further investigate the performance of the model by looking at the
confusion matrix of the classifier, which tells us the relationship between the true and
predicted labels:

from sklearn.metrics import ConfusionMatrixDisplay, confusion_matrix

def plot_confusion_matrix(y_preds, y_true, labels):
    cm = confusion_matrix(y_true, y_preds, normalize="true")
    fig, ax = plt.subplots(figsize=(6, 6))
    disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=labels)
    disp.plot(cmap="Blues", values_format=".2f", ax=ax, colorbar=False)
    plt.title("Normalized confusion matrix")
    plt.show()

y_preds = lr_clf.predict(X_valid)
plot_confusion_matrix(y_preds, y_valid, labels)
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We can see that anger and fear are most often confused with sadness, which agrees
with the observation we made when visualizing the embeddings. Also, love and
surprise are frequently mistaken for joy.

In the next section we will explore the fine-tuning approach, which leads to superior
classification performance. It is, however, important to note that doing this requires
more computational resources, such as GPUs, that might not be available in your
organization. In cases like these, a feature-based approach can be a good compromise
between doing traditional machine learning and deep learning.

Fine-Tuning Transformers
Let’s now explore what it takes to fine-tune a transformer end-to-end. With the fine-
tuning approach we do not use the hidden states as fixed features, but instead train
them as shown in Figure 2-6. This requires the classification head to be differentiable,
which is why this method usually uses a neural network for classification.
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Figure 2-6. When using the fine-tuning approach the whole DistilBERT model is trained
along with the classification head

Training the hidden states that serve as inputs to the classification model will help us
avoid the problem of working with data that may not be well suited for the classifica‐
tion task. Instead, the initial hidden states adapt during training to decrease the
model loss and thus increase its performance.

We’ll be using the Trainer API from  Transformers to simplify the training loop.
Let’s look at the ingredients we need to set one up!

Loading a pretrained model
The first thing we need is a pretrained DistilBERT model like the one we used in the
feature-based approach. The only slight modification is that we use the AutoModelFor
SequenceClassification model instead of AutoModel. The difference is that the
AutoModelForSequenceClassification model has a classification head on top of the
pretrained model outputs, which can be easily trained with the base model. We just
need to specify how many labels the model has to predict (six in our case), since this
dictates the number of outputs the classification head has:

from transformers import AutoModelForSequenceClassification

num_labels = 6
model = (AutoModelForSequenceClassification
         .from_pretrained(model_ckpt, num_labels=num_labels)
         .to(device))

You will see a warning that some parts of the model are randomly initialized. This
is normal since the classification head has not yet been trained. The next step is to
define the metrics that we’ll use to evaluate our model’s performance during
fine-tuning.
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Defining the performance metrics

To monitor metrics during training, we need to define a compute_metrics() function
for the Trainer. This function receives an EvalPrediction object (which is a named
tuple with predictions and label_ids attributes) and needs to return a dictionary
that maps each metric’s name to its value. For our application, we’ll compute the
F1-score and the accuracy of the model as follows:

from sklearn.metrics import accuracy_score, f1_score

def compute_metrics(pred):
    labels = pred.label_ids
    preds = pred.predictions.argmax(-1)
    f1 = f1_score(labels, preds, average="weighted")
    acc = accuracy_score(labels, preds)
    return {"accuracy": acc, "f1": f1}

With the dataset and metrics ready, we just have two final things to take care of before
we define the Trainer class:

1. Log in to our account on the Hugging Face Hub. This will allow us to push our
fine-tuned model to our account on the Hub and share it with the community.

2. Define all the hyperparameters for the training run.

We’ll tackle these steps in the next section.

Training the model
If you’re running this code in a Jupyter notebook, you can log in to the Hub with the
following helper function:

from huggingface_hub import notebook_login

notebook_login()

This will display a widget in which you can enter your username and password, or an
access token with write privileges. You can find details on how to create access tokens
in the Hub documentation. If you’re working in the terminal, you can log in by run‐
ning the following command:

$ huggingface-cli login

To define the training parameters, we use the TrainingArguments class. This class
stores a lot of information and gives you fine-grained control over the training and
evaluation. The most important argument to specify is output_dir, which is where
all the artifacts from training are stored. Here is an example of TrainingArguments in
all its glory:
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from transformers import Trainer, TrainingArguments

batch_size = 64
logging_steps = len(emotions_encoded["train"]) // batch_size
model_name = f"{model_ckpt}-finetuned-emotion"
training_args = TrainingArguments(output_dir=model_name,
                                  num_train_epochs=2,
                                  learning_rate=2e-5,
                                  per_device_train_batch_size=batch_size,
                                  per_device_eval_batch_size=batch_size,
                                  weight_decay=0.01,
                                  evaluation_strategy="epoch",
                                  disable_tqdm=False,
                                  logging_steps=logging_steps,
                                  push_to_hub=True,
                                  log_level="error")

Here we also set the batch size, learning rate, and number of epochs, and specify to
load the best model at the end of the training run. With this final ingredient, we can
instantiate and fine-tune our model with the Trainer:

from transformers import Trainer

trainer = Trainer(model=model, args=training_args,
                  compute_metrics=compute_metrics,
                  train_dataset=emotions_encoded["train"],
                  eval_dataset=emotions_encoded["validation"],
                  tokenizer=tokenizer)
trainer.train();

Epoch Training Loss Validation Loss Accuracy F1

1 0.840900 0.327445 0.896500 0.892285

2 0.255000 0.220472 0.922500 0.922550

Looking at the logs, we can see that our model has an F1-score on the validation set of
around 92%—this is a significant improvement over the feature-based approach!

We can take a more detailed look at the training metrics by calculating the confusion
matrix. To visualize the confusion matrix, we first need to get the predictions on the
validation set. The predict() method of the Trainer class returns several useful
objects we can use for evaluation:

preds_output = trainer.predict(emotions_encoded["validation"])

The output of the predict() method is a PredictionOutput object that contains
arrays of predictions and label_ids, along with the metrics we passed to the
trainer. For example, the metrics on the validation set can be accessed as follows:

preds_output.metrics
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{'test_loss': 0.22047173976898193,
 'test_accuracy': 0.9225,
 'test_f1': 0.9225500751072866,
 'test_runtime': 1.6357,
 'test_samples_per_second': 1222.725,
 'test_steps_per_second': 19.564}

It also contains the raw predictions for each class. We can decode the predictions
greedily using np.argmax(). This yields the predicted labels and has the same format
as the labels returned by the Scikit-learn models in the feature-based approach:

y_preds = np.argmax(preds_output.predictions, axis=1)

With the predictions, we can plot the confusion matrix again:

plot_confusion_matrix(y_preds, y_valid, labels)

This is much closer to the ideal diagonal confusion matrix. The love category is still
often confused with joy, which seems natural. surprise is also frequently mistaken
for joy, or confused with fear. Overall the performance of the model seems quite
good, but before we call it a day, let’s dive a little deeper into the types of errors our
model is likely to make.
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Fine-Tuning with Keras
If you are using TensorFlow, it’s also possible to fine-tune your models using the
Keras API. The main difference from the PyTorch API is that there is no Trainer
class, since Keras models already provide a built-in fit() method. To see how this
works, let’s first load DistilBERT as a TensorFlow model:

from transformers import TFAutoModelForSequenceClassification

tf_model = (TFAutoModelForSequenceClassification
            .from_pretrained(model_ckpt, num_labels=num_labels))

Next, we’ll convert our datasets into the tf.data.Dataset format. Because we have
already padded our tokenized inputs, we can do this conversion easily by applying the
to_tf_dataset() method to emotions_encoded:

# The column names to convert to TensorFlow tensors
tokenizer_columns = tokenizer.model_input_names

tf_train_dataset = emotions_encoded["train"].to_tf_dataset(
    columns=tokenizer_columns, label_cols=["label"], shuffle=True,
    batch_size=batch_size)
tf_eval_dataset = emotions_encoded["validation"].to_tf_dataset(
    columns=tokenizer_columns, label_cols=["label"], shuffle=False,
    batch_size=batch_size)

Here we’ve also shuffled the training set, and defined the batch size for it and the vali‐
dation set. The last thing to do is compile and train the model:

import tensorflow as tf

tf_model.compile(
    optimizer=tf.keras.optimizers.Adam(learning_rate=5e-5),
    loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
    metrics=tf.metrics.SparseCategoricalAccuracy())

tf_model.fit(tf_train_dataset, validation_data=tf_eval_dataset, epochs=2)

Error analysis
Before moving on, we should investigate our model’s predictions a little bit further. A
simple yet powerful technique is to sort the validation samples by the model loss.
When we pass the label during the forward pass, the loss is automatically calculated
and returned. Here’s a function that returns the loss along with the predicted label:

from torch.nn.functional import cross_entropy

def forward_pass_with_label(batch):
    # Place all input tensors on the same device as the model
    inputs = {k:v.to(device) for k,v in batch.items()
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              if k in tokenizer.model_input_names}

    with torch.no_grad():
        output = model(**inputs)
        pred_label = torch.argmax(output.logits, axis=-1)
        loss = cross_entropy(output.logits, batch["label"].to(device),
                             reduction="none")
    # Place outputs on CPU for compatibility with other dataset columns
    return {"loss": loss.cpu().numpy(),
            "predicted_label": pred_label.cpu().numpy()}

Using the map() method once more, we can apply this function to get the losses for all
the samples:

# Convert our dataset back to PyTorch tensors
emotions_encoded.set_format("torch",
                            columns=["input_ids", "attention_mask", "label"])
# Compute loss values
emotions_encoded["validation"] = emotions_encoded["validation"].map(
    forward_pass_with_label, batched=True, batch_size=16)

Finally, we create a DataFrame with the texts, losses, and predicted/true labels:

emotions_encoded.set_format("pandas")
cols = ["text", "label", "predicted_label", "loss"]
df_test = emotions_encoded["validation"][:][cols]
df_test["label"] = df_test["label"].apply(label_int2str)
df_test["predicted_label"] = (df_test["predicted_label"]
                              .apply(label_int2str))

We can now easily sort emotions_encoded by the losses in either ascending or
descending order. The goal of this exercise is to detect one of the following:

Wrong labels
Every process that adds labels to data can be flawed. Annotators can make mis‐
takes or disagree, while labels that are inferred from other features can be wrong.
If it was easy to automatically annotate data, then we would not need a model to
do it. Thus, it is normal that there are some wrongly labeled examples. With this
approach, we can quickly find and correct them.

Quirks of the dataset
Datasets in the real world are always a bit messy. When working with text, special
characters or strings in the inputs can have a big impact on the model’s predic‐
tions. Inspecting the model’s weakest predictions can help identify such features,
and cleaning the data or injecting similar examples can make the model more
robust.

Let’s first have a look at the data samples with the highest losses:

df_test.sort_values("loss", ascending=False).head(10)
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text label predicted_label loss

i feel that he was being overshadowed by the supporting characters love sadness 5.704531

i called myself pro life and voted for perry without knowing this information i
would feel betrayed but moreover i would feel that i had betrayed god by
supporting a man who mandated a barely year old vaccine for little girls putting
them in danger to financially support people close to him

joy sadness 5.484461

i guess i feel betrayed because i admired him so much and for someone to do this
to his wife and kids just goes beyond the pale

joy sadness 5.434768

i feel badly about reneging on my commitment to bring donuts to the faithful at
holy family catholic church in columbus ohio

love sadness 5.257482

i as representative of everything thats wrong with corporate america and feel that
sending him to washington is a ludicrous idea

surprise sadness 4.827708

i guess this is a memoir so it feels like that should be fine too except i dont know
something about such a deep amount of self absorption made me feel
uncomfortable

joy fear 4.713047

i am going to several holiday parties and i can t wait to feel super awkward i am
going to several holiday parties and i can t wait to feel super awkward a href http
badplaydate

joy sadness 4.704955

i felt ashamed of these feelings and was scared because i knew that something
wrong with me and thought i might be gay

fear sadness 4.656096

i guess we would naturally feel a sense of loneliness even the people who said
unkind things to you might be missed

anger sadness 4.593202

im lazy my characters fall into categories of smug and or blas people and their foils
people who feel inconvenienced by smug and or blas people

joy fear 4.311287

We can clearly see that the model predicted some of the labels incorrectly. On the
other hand, it seems that there are quite a few examples with no clear class, which
might be either mislabeled or require a new class altogether. In particular, joy seems
to be mislabeled several times. With this information we can refine the dataset, which
often can lead to as big a performance gain (or more) as having more data or larger
models!

When looking at the samples with the lowest losses, we observe that the model seems
to be most confident when predicting the sadness class. Deep learning models are
exceptionally good at finding and exploiting shortcuts to get to a prediction. For this
reason, it is also worth investing time into looking at the examples that the model is
most confident about, so that we can be confident that the model does not improp‐
erly exploit certain features of the text. So, let’s also look at the predictions with the
smallest loss:

df_test.sort_values("loss", ascending=True).head(10)
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text label predicted_label loss

i feel try to tell me im ungrateful tell me im basically the worst daughter sister in
the world

sadness sadness 0.017331

im kinda relieve but at the same time i feel disheartened sadness sadness 0.017392

i and feel quite ungrateful for it but i m looking forward to summer and warmth
and light nights

sadness sadness 0.017400

i remember feeling disheartened one day when we were studying a poem really
dissecting it verse by verse stanza by stanza

sadness sadness 0.017461

i feel like an ungrateful asshole sadness sadness 0.017485

i leave the meeting feeling more than a little disheartened sadness sadness 0.017670

i am feeling a little disheartened sadness sadness 0.017685

i feel like i deserve to be broke with how frivolous i am sadness sadness 0.017888

i started this blog with pure intentions i must confess to starting to feel a little
disheartened lately by the knowledge that there doesnt seem to be anybody
reading it

sadness sadness 0.017899

i feel so ungrateful to be wishing this pregnancy over now sadness sadness 0.017913

We now know that the joy is sometimes mislabeled and that the model is most confi‐
dent about predicting the label sadness. With this information we can make targeted
improvements to our dataset, and also keep an eye on the class the model seems to be
very confident about.

The last step before serving the trained model is to save it for later usage.  Trans‐
formers allows us to do this in a few steps, which we’ll show you in the next section.

Saving and sharing the model
The NLP community benefits greatly from sharing pretrained and fine-tuned models,
and everybody can share their models with others via the Hugging Face Hub. Any
community-generated model can be downloaded from the Hub just like we downloa‐
ded the DistilBERT model. With the Trainer API, saving and sharing a model is
simple:

trainer.push_to_hub(commit_message="Training completed!")

We can also use the fine-tuned model to make predictions on new tweets. Since we’ve
pushed our model to the Hub, we can now use it with the pipeline() function, just
like we did in Chapter 1. First, let’s load the pipeline:

from transformers import pipeline

# Change `transformersbook` to your Hub username
model_id = "transformersbook/distilbert-base-uncased-finetuned-emotion"
classifier = pipeline("text-classification", model=model_id)
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Then let’s test the pipeline with a sample tweet:

custom_tweet = "I saw a movie today and it was really good."
preds = classifier(custom_tweet, return_all_scores=True)

Finally, we can plot the probability for each class in a bar plot. Clearly, the model esti‐
mates that the most likely class is joy, which appears to be reasonable given the tweet:

preds_df = pd.DataFrame(preds[0])
plt.bar(labels, 100 * preds_df["score"], color='C0')
plt.title(f'"{custom_tweet}"')
plt.ylabel("Class probability (%)")
plt.show()

Conclusion
Congratulations, you now know how to train a transformer model to classify the
emotions in tweets! We have seen two complementary approaches based on features
and fine-tuning, and investigated their strengths and weaknesses.

However, this is just the first step in building a real-world application with trans‐
former models, and we have a lot more ground to cover. Here’s a list of challenges
you’re likely to experience in your NLP journey:

My boss wants my model in production yesterday!
In most applications, your model doesn’t just sit somewhere gathering dust—you
want to make sure it’s serving predictions! When a model is pushed to the Hub,
an inference endpoint is automatically created that can be called with HTTP
requests. We recommend checking out the documentation of the Inference API if
you want to learn more.
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My users want faster predictions!
We’ve already seen one approach to this problem: using DistilBERT. In Chapter 8
we’ll dive into knowledge distillation (the process by which DistilBERT was cre‐
ated), along with other tricks to speed up your transformer models.

Can your model also do X?
As we’ve alluded to in this chapter, transformers are extremely versatile. In the
rest of the book we will be exploring a range of tasks, like question answering and
named entity recognition, all using the same basic architecture.

None of my texts are in English!
It turns out that transformers also come in a multilingual variety, and we’ll use
them in Chapter 4 to tackle several languages at once.

I don’t have any labels!
If there is very little labeled data available, fine-tuning may not be an option. In
Chapter 9, we’ll explore some techniques to deal with this situation.

Now that we’ve seen what’s involved in training and sharing a transformer, in the next
chapter we’ll explore implementing our very own transformer model from scratch.
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CHAPTER 3

Transformer Anatomy

In Chapter 2, we saw what it takes to fine-tune and evaluate a transformer. Now let’s
take a look at how they work under the hood. In this chapter we’ll explore the main
building blocks of transformer models and how to implement them using PyTorch.
We’ll also provide guidance on how to do the same in TensorFlow. We’ll first focus on
building the attention mechanism, and then add the bits and pieces necessary to
make a transformer encoder work. We’ll also have a brief look at the architectural dif‐
ferences between the encoder and decoder modules. By the end of this chapter you
will be able to implement a simple transformer model yourself!

While a deep technical understanding of the Transformer architecture is generally
not necessary to use  Transformers and fine-tune models for your use case, it can
be helpful for comprehending and navigating the limitations of transformers and
using them in new domains.

This chapter also introduces a taxonomy of transformers to help you understand the
zoo of models that have emerged in recent years. Before diving into the code, let’s
start with an overview of the original architecture that kick-started the transformer
revolution.

The Transformer Architecture
As we saw in Chapter 1, the original Transformer is based on the encoder-decoder
architecture that is widely used for tasks like machine translation, where a sequence
of words is translated from one language to another. This architecture consists of two
components:

Encoder
Converts an input sequence of tokens into a sequence of embedding vectors,
often called the hidden state or context
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Decoder
Uses the encoder’s hidden state to iteratively generate an output sequence of
tokens, one token at a time

As illustrated in Figure 3-1, the encoder and decoder are themselves composed of
several building blocks.

Figure 3-1. Encoder-decoder architecture of the transformer, with the encoder shown in
the upper half of the figure and the decoder in the lower half

We’ll look at each of the components in detail shortly, but we can already see a few
things in Figure 3-1 that characterize the Transformer architecture:

• The input text is tokenized and converted to token embeddings using the techni‐
ques we encountered in Chapter 2. Since the attention mechanism is not aware of
the relative positions of the tokens, we need a way to inject some information
about token positions into the input to model the sequential nature of text. The
token embeddings are thus combined with positional embeddings that contain
positional information for each token.

• The encoder is composed of a stack of encoder layers or “blocks,” which is analo‐
gous to stacking convolutional layers in computer vision. The same is true of the
decoder, which has its own stack of decoder layers.

• The encoder’s output is fed to each decoder layer, and the decoder then generates
a prediction for the most probable next token in the sequence. The output of this
step is then fed back into the decoder to generate the next token, and so on until
a special end-of-sequence (EOS) token is reached. In the example from
Figure 3-1, imagine the decoder has already predicted “Die” and “Zeit”. Now it
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1 Y. Liu and M. Lapata, “Text Summarization with Pretrained Encoder”, (2019).

gets these two as an input as well as all the encoder’s outputs to predict the next
token, “fliegt”. In the next step the decoder gets “fliegt” as an additional input. We
repeat the process until the decoder predicts the EOS token or we reached a max‐
imum length.

The Transformer architecture was originally designed for sequence-to-sequence tasks
like machine translation, but both the encoder and decoder blocks were soon adapted
as standalone models. Although there are hundreds of different transformer models,
most of them belong to one of three types:

Encoder-only
These models convert an input sequence of text into a rich numerical representa‐
tion that is well suited for tasks like text classification or named entity recogni‐
tion. BERT and its variants, like RoBERTa and DistilBERT, belong to this class of
architectures. The representation computed for a given token in this architecture
depends both on the left (before the token) and the right (after the token) con‐
texts. This is often called bidirectional attention.

Decoder-only
Given a prompt of text like “Thanks for lunch, I had a…” these models will auto-
complete the sequence by iteratively predicting the most probable next word.
The family of GPT models belong to this class. The representation computed for
a given token in this architecture depends only on the left context. This is often
called causal or autoregressive attention.

Encoder-decoder
These are used for modeling complex mappings from one sequence of text to
another; they’re suitable for machine translation and summarization tasks. In
addition to the Transformer architecture, which as we’ve seen combines an
encoder and a decoder, the BART and T5 models belong to this class.

In reality, the distinction between applications for decoder-only
versus encoder-only architectures is a bit blurry. For example,
decoder-only models like those in the GPT family can be primed
for tasks like translation that are conventionally thought of as
sequence-to-sequence tasks. Similarly, encoder-only models like
BERT can be applied to summarization tasks that are usually asso‐
ciated with encoder-decoder or decoder-only models.1

Now that you have a high-level understanding of the Transformer architecture, let’s
take a closer look at the inner workings of the encoder.
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The Encoder
As we saw earlier, the transformer’s encoder consists of many encoder layers stacked
next to each other. As illustrated in Figure 3-2, each encoder layer receives a sequence
of embeddings and feeds them through the following sublayers:

• A multi-head self-attention layer
• A fully connected feed-forward layer that is applied to each input embedding

The output embeddings of each encoder layer have the same size as the inputs, and
we’ll soon see that the main role of the encoder stack is to “update” the input embed‐
dings to produce representations that encode some contextual information in the
sequence. For example, the word “apple” will be updated to be more “company-like”
and less “fruit-like” if the words “keynote” or “phone” are close to it.

Figure 3-2. Zooming into the encoder layer

Each of these sublayers also uses skip connections and layer normalization, which are
standard tricks to train deep neural networks effectively. But to truly understand what
makes a transformer work, we have to go deeper. Let’s start with the most important
building block: the self-attention layer.
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Self-Attention
As we discussed in Chapter 1, attention is a mechanism that allows neural networks
to assign a different amount of weight or “attention” to each element in a sequence.
For text sequences, the elements are token embeddings like the ones we encountered
in Chapter 2, where each token is mapped to a vector of some fixed dimension. For
example, in BERT each token is represented as a 768-dimensional vector. The “self ”
part of self-attention refers to the fact that these weights are computed for all hidden
states in the same set—for example, all the hidden states of the encoder. By contrast,
the attention mechanism associated with recurrent models involves computing the
relevance of each encoder hidden state to the decoder hidden state at a given decod‐
ing timestep.

The main idea behind self-attention is that instead of using a fixed embedding for
each token, we can use the whole sequence to compute a weighted average of each
embedding. Another way to formulate this is to say that given a sequence of token
embeddings x1, ..., xn, self-attention produces a sequence of new embeddings x1′ , ..., xn′

where each xi′ is a linear combination of all the x j:

xi′ = ∑
j = 1

n
w jix j

The coefficients w ji are called attention weights and are normalized so that ∑ j w ji = 1.
To see why averaging the token embeddings might be a good idea, consider what
comes to mind when you see the word “flies”. You might think of annoying insects,
but if you were given more context, like “time flies like an arrow”, then you would
realize that “flies” refers to the verb instead. Similarly, we can create a representation
for “flies” that incorporates this context by combining all the token embeddings in
different proportions, perhaps by assigning a larger weight w ji to the token embed‐
dings for “time” and “arrow”. Embeddings that are generated in this way are called
contextualized embeddings and predate the invention of transformers in language
models like ELMo.2 A diagram of the process is shown in Figure 3-3, where we illus‐
trate how, depending on the context, two different representations for “flies” can be
generated via self-attention.
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3 A. Vaswani et al., “Attention Is All You Need”, (2017).

Figure 3-3. Diagram showing how self-attention updates raw token embeddings (upper)
into contextualized embeddings (lower) to create representations that incorporate infor‐
mation from the whole sequence

Let’s now take a look at how we can calculate the attention weights.

Scaled dot-product attention
There are several ways to implement a self-attention layer, but the most common one
is scaled dot-product attention, from the paper introducing the Transformer architec‐
ture.3 There are four main steps required to implement this mechanism:

1. Project each token embedding into three vectors called query, key, and value.
2. Compute attention scores. We determine how much the query and key vectors

relate to each other using a similarity function. As the name suggests, the similar‐
ity function for scaled dot-product attention is the dot product, computed effi‐
ciently using matrix multiplication of the embeddings. Queries and keys that are
similar will have a large dot product, while those that don’t share much in com‐
mon will have little to no overlap. The outputs from this step are called the atten‐
tion scores, and for a sequence with n input tokens there is a corresponding n × n
matrix of attention scores.
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3. Compute attention weights. Dot products can in general produce arbitrarily large
numbers, which can destabilize the training process. To handle this, the attention
scores are first multiplied by a scaling factor to normalize their variance and then
normalized with a softmax to ensure all the column values sum to 1. The result‐
ing n × n matrix now contains all the attention weights, w ji.

4. Update the token embeddings. Once the attention weights are computed, we
multiply them by the value vector v1, ..., vn to obtain an updated representation
for embedding xi′ = ∑ j w jiv j.

We can visualize how the attention weights are calculated with a nifty library called
BertViz for Jupyter. This library provides several functions that can be used to visual‐
ize different aspects of attention in transformer models. To visualize the attention
weights, we can use the neuron_view module, which traces the computation of the
weights to show how the query and key vectors are combined to produce the final
weight. Since BertViz needs to tap into the attention layers of the model, we’ll instan‐
tiate our BERT checkpoint with the model class from BertViz and then use the
show() function to generate the interactive visualization for a specific encoder layer
and attention head. Note that you need to click the “+” on the left to activate the
attention visualization:

from transformers import AutoTokenizer
from bertviz.transformers_neuron_view import BertModel
from bertviz.neuron_view import show

model_ckpt = "bert-base-uncased"
tokenizer = AutoTokenizer.from_pretrained(model_ckpt)
model = BertModel.from_pretrained(model_ckpt)
text = "time flies like an arrow"
show(model, "bert", tokenizer, text, display_mode="light", layer=0, head=8)

From the visualization, we can see the values of the query and key vectors are repre‐
sented as vertical bands, where the intensity of each band corresponds to the magni‐
tude. The connecting lines are weighted according to the attention between the
tokens, and we can see that the query vector for “flies” has the strongest overlap with
the key vector for “arrow”.
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Demystifying Queries, Keys, and Values
The notion of query, key, and value vectors may seem a bit cryptic the first time you
encounter them. Their names were inspired by information retrieval systems, but we
can motivate their meaning with a simple analogy. Imagine that you’re at the super‐
market buying all the ingredients you need for your dinner. You have the dish’s recipe,
and each of the required ingredients can be thought of as a query. As you scan the
shelves, you look at the labels (keys) and check whether they match an ingredient on
your list (similarity function). If you have a match, then you take the item (value)
from the shelf.

In this analogy, you only get one grocery item for every label that matches the ingre‐
dient. Self-attention is a more abstract and “smooth” version of this: every label in the
supermarket matches the ingredient to the extent to which each key matches the
query. So if your list includes a dozen eggs, then you might end up grabbing 10 eggs,
an omelette, and a chicken wing.

Let’s take a look at this process in more detail by implementing the diagram of opera‐
tions to compute scaled dot-product attention, as shown in Figure 3-4.

Figure 3-4. Operations in scaled dot-product attention

We will use PyTorch to implement the Transformer architecture in this chapter, but
the steps in TensorFlow are analogous. We provide a mapping between the most
important functions in the two frameworks in Table 3-1.

Table 3-1. PyTorch and TensorFlow (Keras) classes and methods used in this chapter

PyTorch TensorFlow (Keras) Creates/implements

nn.Linear keras.layers.Dense A dense neural network layer

nn.Module keras.layers.Layer The building blocks of models

nn.Dropout keras.layers.Dropout A dropout layer

nn.LayerNorm keras.layers.LayerNormalization Layer normalization

nn.Embedding keras.layers.Embedding An embedding layer

nn.GELU keras.activations.gelu The Gaussian Error Linear Unit activation function

nn.bmm tf.matmul Batched matrix multiplication

model.forward model.call The model’s forward pass
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The first thing we need to do is tokenize the text, so let’s use our tokenizer to extract
the input IDs:

inputs = tokenizer(text, return_tensors="pt", add_special_tokens=False)
inputs.input_ids

tensor([[ 2051, 10029,  2066,  2019,  8612]])

As we saw in Chapter 2, each token in the sentence has been mapped to a unique ID
in the tokenizer’s vocabulary. To keep things simple, we’ve also excluded the [CLS]
and [SEP] tokens by setting add_special_tokens=False. Next, we need to create
some dense embeddings. Dense in this context means that each entry in the embed‐
dings contains a nonzero value. In contrast, the one-hot encodings we saw in Chap‐
ter 2 are sparse, since all entries except one are zero. In PyTorch, we can do this by
using a torch.nn.Embedding layer that acts as a lookup table for each input ID:

from torch import nn
from transformers import AutoConfig

config = AutoConfig.from_pretrained(model_ckpt)
token_emb = nn.Embedding(config.vocab_size, config.hidden_size)
token_emb

Embedding(30522, 768)

Here we’ve used the AutoConfig class to load the config.json file associated with the
bert-base-uncased checkpoint. In  Transformers, every checkpoint is assigned a
configuration file that specifies various hyperparameters like vocab_size and
hidden_size, which in our example shows us that each input ID will be mapped to
one of the 30,522 embedding vectors stored in nn.Embedding, each with a size of 768.
The AutoConfig class also stores additional metadata, such as the label names, which
are used to format the model’s predictions.

Note that the token embeddings at this point are independent of their context. This
means that homonyms (words that have the same spelling but different meaning),
like “flies” in the previous example, have the same representation. The role of the sub‐
sequent attention layers will be to mix these token embeddings to disambiguate and
inform the representation of each token with the content of its context.

Now that we have our lookup table, we can generate the embeddings by feeding in the
input IDs:

inputs_embeds = token_emb(inputs.input_ids)
inputs_embeds.size()

torch.Size([1, 5, 768])

This has given us a tensor of shape [batch_size, seq_len, hidden_dim], just like
we saw in Chapter 2. We’ll postpone the positional encodings, so the next step is to
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create the query, key, and value vectors and calculate the attention scores using the
dot product as the similarity function:

import torch
from math import sqrt

query = key = value = inputs_embeds
dim_k = key.size(-1)
scores = torch.bmm(query, key.transpose(1,2)) / sqrt(dim_k)
scores.size()

torch.Size([1, 5, 5])

This has created a 5 × 5 matrix of attention scores per sample in the batch. We’ll see
later that the query, key, and value vectors are generated by applying independent
weight matrices WQ, K, V to the embeddings, but for now we’ve kept them equal for
simplicity. In scaled dot-product attention, the dot products are scaled by the size of
the embedding vectors so that we don’t get too many large numbers during training
that can cause the softmax we will apply next to saturate.

The torch.bmm() function performs a batch matrix-matrix product
that simplifies the computation of the attention scores where the
query and key vectors have the shape [batch_size, seq_len,
hidden_dim]. If we ignored the batch dimension we could calculate
the dot product between each query and key vector by simply
transposing the key tensor to have the shape [hidden_dim,

seq_len] and then using the matrix product to collect all the dot
products in a [seq_len, seq_len] matrix. Since we want to do
this for all sequences in the batch independently, we use
torch.bmm(), which takes two batches of matrices and multiplies
each matrix from the first batch with the corresponding matrix in
the second batch.

Let’s apply the softmax now:

import torch.nn.functional as F

weights = F.softmax(scores, dim=-1)
weights.sum(dim=-1)

tensor([[1., 1., 1., 1., 1.]], grad_fn=<SumBackward1>)

The final step is to multiply the attention weights by the values:

attn_outputs = torch.bmm(weights, value)
attn_outputs.shape

torch.Size([1, 5, 768])
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And that’s it—we’ve gone through all the steps to implement a simplified form of self-
attention! Notice that the whole process is just two matrix multiplications and a soft‐
max, so you can think of “self-attention” as just a fancy form of averaging.

Let’s wrap these steps into a function that we can use later:

def scaled_dot_product_attention(query, key, value):
    dim_k = query.size(-1)
    scores = torch.bmm(query, key.transpose(1, 2)) / sqrt(dim_k)
    weights = F.softmax(scores, dim=-1)
    return torch.bmm(weights, value)

Our attention mechanism with equal query and key vectors will assign a very large
score to identical words in the context, and in particular to the current word itself: the
dot product of a query with itself is always 1. But in practice, the meaning of a word
will be better informed by complementary words in the context than by identical
words—for example, the meaning of “flies” is better defined by incorporating infor‐
mation from “time” and “arrow” than by another mention of “flies”. How can we pro‐
mote this behavior?

Let’s allow the model to create a different set of vectors for the query, key, and value of
a token by using three different linear projections to project our initial token vector
into three different spaces.

Multi-headed attention
In our simple example, we only used the embeddings “as is” to compute the attention
scores and weights, but that’s far from the whole story. In practice, the self-attention
layer applies three independent linear transformations to each embedding to generate
the query, key, and value vectors. These transformations project the embeddings and
each projection carries its own set of learnable parameters, which allows the self-
attention layer to focus on different semantic aspects of the sequence.

It also turns out to be beneficial to have multiple sets of linear projections, each one
representing a so-called attention head. The resulting multi-head attention layer is
illustrated in Figure 3-5. But why do we need more than one attention head? The rea‐
son is that the softmax of one head tends to focus on mostly one aspect of similarity.
Having several heads allows the model to focus on several aspects at once. For
instance, one head can focus on subject-verb interaction, whereas another finds
nearby adjectives. Obviously we don’t handcraft these relations into the model, and
they are fully learned from the data. If you are familiar with computer vision models
you might see the resemblance to filters in convolutional neural networks, where one
filter can be responsible for detecting faces and another one finds wheels of cars in
images.
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Figure 3-5. Multi-head attention

Let’s implement this layer by first coding up a single attention head:

class AttentionHead(nn.Module):
    def __init__(self, embed_dim, head_dim):
        super().__init__()
        self.q = nn.Linear(embed_dim, head_dim)
        self.k = nn.Linear(embed_dim, head_dim)
        self.v = nn.Linear(embed_dim, head_dim)

    def forward(self, hidden_state):
        attn_outputs = scaled_dot_product_attention(
            self.q(hidden_state), self.k(hidden_state), self.v(hidden_state))
        return attn_outputs

Here we’ve initialized three independent linear layers that apply matrix multiplication
to the embedding vectors to produce tensors of shape [batch_size, seq_len,

head_dim], where head_dim is the number of dimensions we are projecting into.
Although head_dim does not have to be smaller than the number of embedding
dimensions of the tokens (embed_dim), in practice it is chosen to be a multiple of
embed_dim so that the computation across each head is constant. For example, BERT
has 12 attention heads, so the dimension of each head is 768/12 = 64.

Now that we have a single attention head, we can concatenate the outputs of each one
to implement the full multi-head attention layer:

class MultiHeadAttention(nn.Module):
    def __init__(self, config):
        super().__init__()
        embed_dim = config.hidden_size
        num_heads = config.num_attention_heads
        head_dim = embed_dim // num_heads
        self.heads = nn.ModuleList(
            [AttentionHead(embed_dim, head_dim) for _ in range(num_heads)]
        )
        self.output_linear = nn.Linear(embed_dim, embed_dim)
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    def forward(self, hidden_state):
        x = torch.cat([h(hidden_state) for h in self.heads], dim=-1)
        x = self.output_linear(x)
        return x

Notice that the concatenated output from the attention heads is also fed through a
final linear layer to produce an output tensor of shape [batch_size, seq_len,
hidden_dim] that is suitable for the feed-forward network downstream. To confirm,
let’s see if the multi-head attention layer produces the expected shape of our inputs.
We pass the configuration we loaded earlier from the pretrained BERT model when
initializing the MultiHeadAttention module. This ensures that we use the same set‐
tings as BERT:

multihead_attn = MultiHeadAttention(config)
attn_output = multihead_attn(inputs_embeds)
attn_output.size()

torch.Size([1, 5, 768])

It works! To wrap up this section on attention, let’s use BertViz again to visualize the
attention for two different uses of the word “flies”. Here we can use the head_view()
function from BertViz by computing the attentions of a pretrained checkpoint and
indicating where the sentence boundary lies:

from bertviz import head_view
from transformers import AutoModel

model = AutoModel.from_pretrained(model_ckpt, output_attentions=True)

sentence_a = "time flies like an arrow"
sentence_b = "fruit flies like a banana"

viz_inputs = tokenizer(sentence_a, sentence_b, return_tensors='pt')
attention = model(**viz_inputs).attentions
sentence_b_start = (viz_inputs.token_type_ids == 0).sum(dim=1)
tokens = tokenizer.convert_ids_to_tokens(viz_inputs.input_ids[0])

head_view(attention, tokens, sentence_b_start, heads=[8])
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This visualization shows the attention weights as lines connecting the token whose
embedding is getting updated (left) with every word that is being attended to (right).
The intensity of the lines indicates the strength of the attention weights, with dark
lines representing values close to 1, and faint lines representing values close to 0.

In this example, the input consists of two sentences and the [CLS] and [SEP] tokens
are the special tokens in BERT’s tokenizer that we encountered in Chapter 2. One
thing we can see from the visualization is that the attention weights are strongest
between words that belong to the same sentence, which suggests BERT can tell that it
should attend to words in the same sentence. However, for the word “flies” we can see
that BERT has identified “arrow” as important in the first sentence and “fruit” and
“banana” in the second. These attention weights allow the model to distinguish the
use of “flies” as a verb or noun, depending on the context in which it occurs!

Now that we’ve covered attention, let’s take a look at implementing the missing piece
of the encoder layer: position-wise feed-forward networks.

The Feed-Forward Layer
The feed-forward sublayer in the encoder and decoder is just a simple two-layer fully
connected neural network, but with a twist: instead of processing the whole sequence
of embeddings as a single vector, it processes each embedding independently. For this
reason, this layer is often referred to as a position-wise feed-forward layer. You may
also see it referred to as a one-dimensional convolution with a kernel size of one, typ‐
ically by people with a computer vision background (e.g., the OpenAI GPT codebase
uses this nomenclature). A rule of thumb from the literature is for the hidden size of
the first layer to be four times the size of the embeddings, and a GELU activation
function is most commonly used. This is where most of the capacity and memoriza‐
tion is hypothesized to happen, and it’s the part that is most often scaled when scaling
up the models. We can implement this as a simple nn.Module as follows:

class FeedForward(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.linear_1 = nn.Linear(config.hidden_size, config.intermediate_size)
        self.linear_2 = nn.Linear(config.intermediate_size, config.hidden_size)
        self.gelu = nn.GELU()
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, x):
        x = self.linear_1(x)
        x = self.gelu(x)
        x = self.linear_2(x)
        x = self.dropout(x)
        return x
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Note that a feed-forward layer such as nn.Linear is usually applied to a tensor of
shape (batch_size, input_dim), where it acts on each element of the batch dimen‐
sion independently. This is actually true for any dimension except the last one, so
when we pass a tensor of shape (batch_size, seq_len, hidden_dim) the layer is
applied to all token embeddings of the batch and sequence independently, which is
exactly what we want. Let’s test this by passing the attention outputs:

feed_forward = FeedForward(config)
ff_outputs = feed_forward(attn_outputs)
ff_outputs.size()

torch.Size([1, 5, 768])

We now have all the ingredients to create a fully fledged transformer encoder layer!
The only decision left to make is where to place the skip connections and layer nor‐
malization. Let’s take a look at how this affects the model architecture.

Adding Layer Normalization
As mentioned earlier, the Transformer architecture makes use of layer normalization
and skip connections. The former normalizes each input in the batch to have zero
mean and unity variance. Skip connections pass a tensor to the next layer of the
model without processing and add it to the processed tensor. When it comes to plac‐
ing the layer normalization in the encoder or decoder layers of a transformer, there
are two main choices adopted in the literature:

Post layer normalization
This is the arrangement used in the Transformer paper; it places layer normaliza‐
tion in between the skip connections. This arrangement is tricky to train from
scratch as the gradients can diverge. For this reason, you will often see a concept
known as learning rate warm-up, where the learning rate is gradually increased
from a small value to some maximum value during training.

Pre layer normalization
This is the most common arrangement found in the literature; it places layer nor‐
malization within the span of the skip connections. This tends to be much more
stable during training, and it does not usually require any learning rate warm-up.

The difference between the two arrangements is illustrated in Figure 3-6.
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Figure 3-6. Different arrangements of layer normalization in a transformer encoder
layer

We’ll use the second arrangement, so we can simply stick together our building
blocks as follows:

class TransformerEncoderLayer(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.layer_norm_1 = nn.LayerNorm(config.hidden_size)
        self.layer_norm_2 = nn.LayerNorm(config.hidden_size)
        self.attention = MultiHeadAttention(config)
        self.feed_forward = FeedForward(config)

    def forward(self, x):
        # Apply layer normalization and then copy input into query, key, value
        hidden_state = self.layer_norm_1(x)
        # Apply attention with a skip connection
        x = x + self.attention(hidden_state)
        # Apply feed-forward layer with a skip connection
        x = x + self.feed_forward(self.layer_norm_2(x))
        return x

Let’s now test this with our input embeddings:

encoder_layer = TransformerEncoderLayer(config)
inputs_embeds.shape, encoder_layer(inputs_embeds).size()

(torch.Size([1, 5, 768]), torch.Size([1, 5, 768]))

We’ve now implemented our very first transformer encoder layer from scratch! How‐
ever, there is a caveat with the way we set up the encoder layers: they are totally
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4 In fancier terminology, the self-attention and feed-forward layers are said to be permutation equivariant—if
the input is permuted then the corresponding output of the layer is permuted in exactly the same way.

invariant to the position of the tokens. Since the multi-head attention layer is effec‐
tively a fancy weighted sum, the information on token position is lost.4

Luckily, there is an easy trick to incorporate positional information using positional
embeddings. Let’s take a look.

Positional Embeddings
Positional embeddings are based on a simple, yet very effective idea: augment the
token embeddings with a position-dependent pattern of values arranged in a vector.
If the pattern is characteristic for each position, the attention heads and feed-forward
layers in each stack can learn to incorporate positional information into their trans‐
formations.

There are several ways to achieve this, and one of the most popular approaches is to
use a learnable pattern, especially when the pretraining dataset is sufficiently large.
This works exactly the same way as the token embeddings, but using the position
index instead of the token ID as input. With that approach, an efficient way of encod‐
ing the positions of tokens is learned during pretraining.

Let’s create a custom Embeddings module that combines a token embedding layer that
projects the input_ids to a dense hidden state together with the positional embed‐
ding that does the same for position_ids. The resulting embedding is simply the
sum of both embeddings:

class Embeddings(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.token_embeddings = nn.Embedding(config.vocab_size,
                                             config.hidden_size)
        self.position_embeddings = nn.Embedding(config.max_position_embeddings,
                                                config.hidden_size)
        self.layer_norm = nn.LayerNorm(config.hidden_size, eps=1e-12)
        self.dropout = nn.Dropout()

    def forward(self, input_ids):
        # Create position IDs for input sequence
        seq_length = input_ids.size(1)
        position_ids = torch.arange(seq_length, dtype=torch.long).unsqueeze(0)
        # Create token and position embeddings
        token_embeddings = self.token_embeddings(input_ids)
        position_embeddings = self.position_embeddings(position_ids)
        # Combine token and position embeddings
        embeddings = token_embeddings + position_embeddings
        embeddings = self.layer_norm(embeddings)
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5 By combining the idea of absolute and relative positional representations, rotary position embeddings achieve
excellent results on many tasks. GPT-Neo is an example of a model with rotary position embeddings.

        embeddings = self.dropout(embeddings)
        return embeddings

embedding_layer = Embeddings(config)
embedding_layer(inputs.input_ids).size()

torch.Size([1, 5, 768])

We see that the embedding layer now creates a single, dense embedding for each
token.

While learnable position embeddings are easy to implement and widely used, there
are some alternatives:

Absolute positional representations
Transformer models can use static patterns consisting of modulated sine and
cosine signals to encode the positions of the tokens. This works especially well
when there are not large volumes of data available.

Relative positional representations
Although absolute positions are important, one can argue that when computing
an embedding, the surrounding tokens are most important. Relative positional
representations follow that intuition and encode the relative positions between
tokens. This cannot be set up by just introducing a new relative embedding layer
at the beginning, since the relative embedding changes for each token depending
on where from the sequence we are attending to it. Instead, the attention mecha‐
nism itself is modified with additional terms that take the relative position
between tokens into account. Models such as DeBERTa use such representations.5

Let’s put all of this together now by building the full transformer encoder combining
the embeddings with the encoder layers:

class TransformerEncoder(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.embeddings = Embeddings(config)
        self.layers = nn.ModuleList([TransformerEncoderLayer(config)
                                     for _ in range(config.num_hidden_layers)])

    def forward(self, x):
        x = self.embeddings(x)
        for layer in self.layers:
            x = layer(x)
        return x

Let’s check the output shapes of the encoder:
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encoder = TransformerEncoder(config)
encoder(inputs.input_ids).size()

torch.Size([1, 5, 768])

We can see that we get a hidden state for each token in the batch. This output format
makes the architecture very flexible, and we can easily adapt it for various applica‐
tions such as predicting missing tokens in masked language modeling or predicting
the start and end position of an answer in question answering. In the following sec‐
tion we’ll see how we can build a classifier like the one we used in Chapter 2.

Adding a Classification Head
Transformer models are usually divided into a task-independent body and a task-
specific head. We’ll encounter this pattern again in Chapter 4 when we look at the
design pattern of  Transformers. What we have built so far is the body, so if we wish
to build a text classifier, we will need to attach a classification head to that body. We
have a hidden state for each token, but we only need to make one prediction. There
are several options to approach this. Traditionally, the first token in such models is
used for the prediction and we can attach a dropout and a linear layer to make a clas‐
sification prediction. The following class extends the existing encoder for sequence
classification:

class TransformerForSequenceClassification(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.encoder = TransformerEncoder(config)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        self.classifier = nn.Linear(config.hidden_size, config.num_labels)

    def forward(self, x):
        x = self.encoder(x)[:, 0, :] # select hidden state of [CLS] token
        x = self.dropout(x)
        x = self.classifier(x)
        return x

Before initializing the model we need to define how many classes we would like to
predict:

config.num_labels = 3
encoder_classifier = TransformerForSequenceClassification(config)
encoder_classifier(inputs.input_ids).size()

torch.Size([1, 3])

That is exactly what we have been looking for. For each example in the batch we get
the unnormalized logits for each class in the output. This corresponds to the BERT
model that we used in Chapter 2 to detect emotions in tweets.
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6 Note that unlike the self-attention layer, the key and query vectors in encoder-decoder attention can have dif‐
ferent lengths. This is because the encoder and decoder inputs will generally involve sequences of differing
length. As a result, the matrix of attention scores in this layer is rectangular, not square.

This concludes our analysis of the encoder and how we can combine it with a task-
specific head. Let’s now cast our attention (pun intended!) to the decoder.

The Decoder
As illustrated in Figure 3-7, the main difference between the decoder and encoder is
that the decoder has two attention sublayers:

Masked multi-head self-attention layer
Ensures that the tokens we generate at each timestep are only based on the past
outputs and the current token being predicted. Without this, the decoder could
cheat during training by simply copying the target translations; masking the
inputs ensures the task is not trivial.

Encoder-decoder attention layer
Performs multi-head attention over the output key and value vectors of the
encoder stack, with the intermediate representations of the decoder acting as the
queries.6 This way the encoder-decoder attention layer learns how to relate
tokens from two different sequences, such as two different languages. The
decoder has access to the encoder keys and values in each block.

Let’s take a look at the modifications we need to make to include masking in our self-
attention layer, and leave the implementation of the encoder-decoder attention layer
as a homework problem. The trick with masked self-attention is to introduce a mask
matrix with ones on the lower diagonal and zeros above:

seq_len = inputs.input_ids.size(-1)
mask = torch.tril(torch.ones(seq_len, seq_len)).unsqueeze(0)
mask[0]

tensor([[1., 0., 0., 0., 0.],
        [1., 1., 0., 0., 0.],
        [1., 1., 1., 0., 0.],
        [1., 1., 1., 1., 0.],
        [1., 1., 1., 1., 1.]])

Here we’ve used PyTorch’s tril() function to create the lower triangular matrix.
Once we have this mask matrix, we can prevent each attention head from peeking at
future tokens by using Tensor.masked_fill() to replace all the zeros with negative
infinity:

scores.masked_fill(mask == 0, -float("inf"))
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tensor([[[26.8082,    -inf,    -inf,    -inf,    -inf],
         [-0.6981, 26.9043,    -inf,    -inf,    -inf],
         [-2.3190,  1.2928, 27.8710,    -inf,    -inf],
         [-0.5897,  0.3497, -0.3807, 27.5488,    -inf],
         [ 0.5275,  2.0493, -0.4869,  1.6100, 29.0893]]],
       grad_fn=<MaskedFillBackward0>)

Figure 3-7. Zooming into the transformer decoder layer

By setting the upper values to negative infinity, we guarantee that the attention
weights are all zero once we take the softmax over the scores because e−∞ = 0 (recall
that softmax calculates the normalized exponential). We can easily include this mask‐
ing behavior with a small change to our scaled dot-product attention function that we
implemented earlier in this chapter:

def scaled_dot_product_attention(query, key, value, mask=None):
    dim_k = query.size(-1)
    scores = torch.bmm(query, key.transpose(1, 2)) / sqrt(dim_k)
    if mask is not None:
        scores = scores.masked_fill(mask == 0, float("-inf"))
    weights = F.softmax(scores, dim=-1)
    return weights.bmm(value)

From here it is a simple matter to build up the decoder layer; we point the reader to
the excellent implementation of minGPT by Andrej Karpathy for details.
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We’ve given you a lot of technical information here, but now you should have a good
understanding of how every piece of the Transformer architecture works. Before we
move on to building models for tasks more advanced than text classification, let’s
round out the chapter by stepping back a bit and looking at the landscape of different
transformer models and how they relate to each other.

Demystifying Encoder-Decoder Attention
Let’s see if we can shed some light on the mysteries of encoder-decoder attention.
Imagine you (the decoder) are in class taking an exam. Your task is to predict the next
word based on the previous words (decoder inputs), which sounds simple but is
incredibly hard (try it yourself and predict the next words in a passage of this book).
Fortunately, your neighbor (the encoder) has the full text. Unfortunately, they’re a
foreign exchange student and the text is in their mother tongue. Cunning students
that you are, you figure out a way to cheat anyway. You draw a little cartoon illustrat‐
ing the text you already have (the query) and give it to your neighbor. They try to
figure out which passage matches that description (the key), draw a cartoon describ‐
ing the word following that passage (the value), and pass that back to you. With this
system in place, you ace the exam.

Meet the Transformers
As you’ve seen in this chapter, there are three main architectures for transformer
models: encoders, decoders, and encoder-decoders. The initial success of the early
transformer models triggered a Cambrian explosion in model development as
researchers built models on various datasets of different size and nature, used new
pretraining objectives, and tweaked the architecture to further improve performance.
Although the zoo of models is still growing fast, they can still be divided into these
three categories.

In this section we’ll provide a brief overview of the most important transformer mod‐
els in each class. Let’s start by taking a look at the transformer family tree.

The Transformer Tree of Life
Over time, each of the three main architectures has undergone an evolution of its
own. This is illustrated in Figure 3-8, which shows a few of the most prominent mod‐
els and their descendants.
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7 A. Wang et al., “GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language Understand‐
ing”, (2018).

Figure 3-8. An overview of some of the most prominent transformer architectures

With over 50 different architectures included in  Transformers, this family tree by
no means provides a complete overview of all the ones that exist: it simply highlights
a few of the architectural milestones. We’ve covered the original Transformer archi‐
tecture in depth in this chapter, so let’s take a closer look at some of the key descend‐
ants, starting with the encoder branch.

The Encoder Branch
The first encoder-only model based on the Transformer architecture was BERT. At
the time it was published, it outperformed all the state-of-the-art models on the pop‐
ular GLUE benchmark,7 which measures natural language understanding (NLU)
across several tasks of varying difficulty. Subsequently, the pretraining objective and
the architecture of BERT have been adapted to further improve performance.
Encoder-only models still dominate research and industry on NLU tasks such as text
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8 J. Devlin et al., “BERT: Pre-Training of Deep Bidirectional Transformers for Language Understanding”,
(2018).

9 V. Sanh et al., “DistilBERT, a Distilled Version of BERT: Smaller, Faster, Cheaper and Lighter”, (2019).
10 Y. Liu et al., “RoBERTa: A Robustly Optimized BERT Pretraining Approach”, (2019).
11 G. Lample, and A. Conneau, “Cross-Lingual Language Model Pretraining”, (2019).
12 A. Conneau et al., “Unsupervised Cross-Lingual Representation Learning at Scale”, (2019).

classification, named entity recognition, and question answering. Let’s have a brief
look at the BERT model and its variants:

BERT
BERT is pretrained with the two objectives of predicting masked tokens in texts
and determining if one text passage is likely to follow another.8 The former task is
called masked language modeling (MLM) and the latter next sentence prediction
(NSP).

DistilBERT
Although BERT delivers great results, it’s size can make it tricky to deploy in
environments where low latencies are required. By using a technique known as
knowledge distillation during pretraining, DistilBERT achieves 97% of BERT’s
performance while using 40% less memory and being 60% faster.9 You can find
more details on knowledge distillation in Chapter 8.

RoBERTa
A study following the release of BERT revealed that its performance can be fur‐
ther improved by modifying the pretraining scheme. RoBERTa is trained longer,
on larger batches with more training data, and it drops the NSP task.10 Together,
these changes significantly improve its performance compared to the original
BERT model.

XLM
Several pretraining objectives for building multilingual models were explored in
the work on the cross-lingual language model (XLM),11 including the autoregres‐
sive language modeling from GPT-like models and MLM from BERT. In addi‐
tion, the authors of the paper on XLM pretraining introduced translation
language modeling (TLM), which is an extension of MLM to multiple language
inputs. Experimenting with these pretraining tasks, they achieved state-of-the-art
results on several multilingual NLU benchmarks as well as on translation tasks.

XLM-RoBERTa
Following the work of XLM and RoBERTa, the XLM-RoBERTa or XLM-R model
takes multilingual pretraining one step further by massively upscaling the
training data.12 Using the Common Crawl corpus, its developers created a dataset
with 2.5 terabytes of text; they then trained an encoder with MLM on this
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13 Z. Lan et al., “ALBERT: A Lite BERT for Self-Supervised Learning of Language Representations”, (2019).
14 K. Clark et al., “ELECTRA: Pre-Training Text Encoders as Discriminators Rather Than Generators”, (2020).
15 P. He et al., “DeBERTa: Decoding-Enhanced BERT with Disentangled Attention”, (2020).

dataset. Since the dataset only contains data without parallel texts (i.e., transla‐
tions), the TLM objective of XLM was dropped. This approach beats XLM and
multilingual BERT variants by a large margin, especially on low-resource
languages.

ALBERT
The ALBERT model introduced three changes to make the encoder architecture
more efficient.13 First, it decouples the token embedding dimension from the hid‐
den dimension, thus allowing the embedding dimension to be small and thereby
saving parameters, especially when the vocabulary gets large. Second, all layers
share the same parameters, which decreases the number of effective parameters
even further. Finally, the NSP objective is replaced with a sentence-ordering pre‐
diction: the model needs to predict whether or not the order of two consecutive
sentences was swapped rather than predicting if they belong together at all. These
changes make it possible to train even larger models with fewer parameters and
reach superior performance on NLU tasks.

ELECTRA
One limitation of the standard MLM pretraining objective is that at each training
step only the representations of the masked tokens are updated, while the other
input tokens are not. To address this issue, ELECTRA uses a two-model
approach:14 the first model (which is typically small) works like a standard
masked language model and predicts masked tokens. The second model, called
the discriminator, is then tasked to predict which of the tokens in the first model’s
output were originally masked. Therefore, the discriminator needs to make a
binary classification for every token, which makes training 30 times more effi‐
cient. For downstream tasks the discriminator is fine-tuned like a standard BERT
model.

DeBERTa
The DeBERTa model introduces two architectural changes.15 First, each token is
represented as two vectors: one for the content, the other for relative position. By
disentangling the tokens’ content from their relative positions, the self-attention
layers can better model the dependency of nearby token pairs. On the other
hand, the absolute position of a word is also important, especially for decoding.
For this reason, an absolute position embedding is added just before the softmax
layer of the token decoding head. DeBERTa is the first model (as an ensemble) to
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16 A. Wang et al., “SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems”,
(2019).
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18 A. Radford et al., “Language Models Are Unsupervised Multitask Learners”, OpenAI (2019).
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beat the human baseline on the SuperGLUE benchmark,16 a more difficult ver‐
sion of GLUE consisting of several subtasks used to measure NLU performance.

Now that we’ve highlighted some of the major encoder-only architectures, let’s take a
look at the decoder-only models.

The Decoder Branch
The progress on transformer decoder models has been spearheaded to a large extent
by OpenAI. These models are exceptionally good at predicting the next word in a
sequence and are thus mostly used for text generation tasks (see Chapter 5 for more
details). Their progress has been fueled by using larger datasets and scaling the lan‐
guage models to larger and larger sizes. Let’s have a look at the evolution of these fas‐
cinating generation models:

GPT
The introduction of GPT combined two key ideas in NLP:17 the novel and effi‐
cient transformer decoder architecture, and transfer learning. In that setup, the
model was pretrained by predicting the next word based on the previous ones.
The model was trained on the BookCorpus and achieved great results on down‐
stream tasks such as classification.

GPT-2
Inspired by the success of the simple and scalable pretraining approach, the origi‐
nal model and training set were upscaled to produce GPT-2.18 This model is able
to produce long sequences of coherent text. Due to concerns about possible mis‐
use, the model was released in a staged fashion, with smaller models being pub‐
lished first and the full model later.

CTRL
Models like GPT-2 can continue an input sequence (also called a prompt). How‐
ever, the user has little control over the style of the generated sequence. The
Conditional Transformer Language (CTRL) model addresses this issue by adding
“control tokens” at the beginning of the sequence.19 These allow the style of the
generated text to be controlled, which allows for diverse generation.
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GPT-3
Following the success of scaling GPT up to GPT-2, a thorough analysis on the
behavior of language models at different scales revealed that there are simple
power laws that govern the relation between compute, dataset size, model size,
and the performance of a language model.20 Inspired by these insights, GPT-2
was upscaled by a factor of 100 to yield GPT-3,21 with 175 billion parameters.
Besides being able to generate impressively realistic text passages, the model also
exhibits few-shot learning capabilities: with a few examples of a novel task such
as translating text to code, the model is able to accomplish the task on new exam‐
ples. OpenAI has not open-sourced this model, but provides an interface through
the OpenAI API.

GPT-Neo/GPT-J-6B
GPT-Neo and GPT-J-6B are GPT-like models that were trained by EleutherAI, a
collective of researchers who aim to re-create and release GPT-3 scale models.22

The current models are smaller variants of the full 175-billion-parameter model,
with 1.3, 2.7, and 6 billion parameters, and are competitive with the smaller
GPT-3 models OpenAI offers.

The final branch in the transformers tree of life is the encoder-decoder models. Let’s
take a look.

The Encoder-Decoder Branch
Although it has become common to build models using a single encoder or decoder
stack, there are several encoder-decoder variants of the Transformer architecture that
have novel applications across both NLU and NLG domains:

T5
The T5 model unifies all NLU and NLG tasks by converting them into text-to-
text tasks.23 All tasks are framed as sequence-to-sequence tasks, where adopting
an encoder-decoder architecture is natural. For text classification problems, for
example, this means that the text is used as the encoder input and the decoder
has to generate the label as normal text instead of a class. We will look at this in
more detail in Chapter 6. The T5 architecture uses the original Transformer
architecture. Using the large crawled C4 dataset, the model is pretrained with
masked language modeling as well as the SuperGLUE tasks by translating all of
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them to text-to-text tasks. The largest model with 11 billion parameters yielded
state-of-the-art results on several benchmarks.

BART
BART combines the pretraining procedures of BERT and GPT within the
encoder-decoder architecture.24 The input sequences undergo one of several pos‐
sible transformations, from simple masking to sentence permutation, token dele‐
tion, and document rotation. These modified inputs are passed through the
encoder, and the decoder has to reconstruct the original texts. This makes the
model more flexible as it is possible to use it for NLU as well as NLG tasks, and it
achieves state-of-the-art-performance on both.

M2M-100
Conventionally a translation model is built for one language pair and translation
direction. Naturally, this does not scale to many languages, and in addition there
might be shared knowledge between language pairs that could be leveraged for
translation between rare languages. M2M-100 is the first translation model that
can translate between any of 100 languages.25 This allows for high-quality transla‐
tions between rare and underrepresented languages. The model uses prefix
tokens (similar to the special [CLS] token) to indicate the source and target
language.

BigBird
One main limitation of transformer models is the maximum context size, due to
the quadratic memory requirements of the attention mechanism. BigBird
addresses this issue by using a sparse form of attention that scales linearly.26 This
allows for the drastic scaling of contexts from 512 tokens in most BERT models
to 4,096 in BigBird. This is especially useful in cases where long dependencies
need to be conserved, such as in text summarization.

Pretrained checkpoints of all models that we have seen in this section are available on
the Hugging Face Hub and can be fine-tuned to your use case with  Transformers,
as described in the previous chapter.

Conclusion
In this chapter we started at the heart of the Transformer architecture with a deep
dive into self-attention, and we subsequently added all the necessary parts to build a
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transformer encoder model. We added embedding layers for tokens and positional
information, we built in a feed-forward layer to complement the attention heads, and
finally we added a classification head to the model body to make predictions. We also
had a look at the decoder side of the Transformer architecture, and concluded the
chapter with an overview of the most important model architectures.

Now that you have a better understanding of the underlying principles, let’s go
beyond simple classification and build a multilingual named entity recognition
model.
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1 A. Conneau et al., “Unsupervised Cross-Lingual Representation Learning at Scale”, (2019).

CHAPTER 4

Multilingual Named Entity Recognition

So far in this book we have applied transformers to solve NLP tasks on English cor‐
pora—but what do you do when your documents are written in Greek, Swahili, or
Klingon? One approach is to search the Hugging Face Hub for a suitable pretrained
language model and fine-tune it on the task at hand. However, these pretrained mod‐
els tend to exist only for “high-resource” languages like German, Russian, or Man‐
darin, where plenty of webtext is available for pretraining. Another common
challenge arises when your corpus is multilingual: maintaining multiple monolingual
models in production will not be any fun for you or your engineering team.

Fortunately, there is a class of multilingual transformers that come to the rescue. Like
BERT, these models use masked language modeling as a pretraining objective, but
they are trained jointly on texts in over one hundred languages. By pretraining on
huge corpora across many languages, these multilingual transformers enable zero-
shot cross-lingual transfer. This means that a model that is fine-tuned on one language
can be applied to others without any further training! This also makes these models
well suited for “code-switching,” where a speaker alternates between two or more lan‐
guages or dialects in the context of a single conversation.

In this chapter we will explore how a single transformer model called XLM-RoBERTa
(introduced in Chapter 3)1 can be fine-tuned to perform named entity recognition
(NER) across several languages. As we saw in Chapter 1, NER is a common NLP task
that identifies entities like people, organizations, or locations in text. These entities
can be used for various applications such as gaining insights from company docu‐
ments, augmenting the quality of search engines, or simply building a structured
database from a corpus.
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For this chapter let’s assume that we want to perform NER for a customer based in
Switzerland, where there are four national languages (with English often serving as a
bridge between them). Let’s start by getting a suitable multilingual corpus for this
problem.

Zero-shot transfer or zero-shot learning usually refers to the task of
training a model on one set of labels and then evaluating it on a
different set of labels. In the context of transformers, zero-shot
learning may also refer to situations where a language model like
GPT-3 is evaluated on a downstream task that it wasn’t even fine-
tuned on.

The Dataset
In this chapter we will be using a subset of the Cross-lingual TRansfer Evaluation of
Multilingual Encoders (XTREME) benchmark called WikiANN or PAN-X.2 This
dataset consists of Wikipedia articles in many languages, including the four most
commonly spoken languages in Switzerland: German (62.9%), French (22.9%), Ital‐
ian (8.4%), and English (5.9%). Each article is annotated with LOC (location), PER
(person), and ORG (organization) tags in the “inside-outside-beginning” (IOB2) for‐
mat. In this format, a B- prefix indicates the beginning of an entity, and consecutive
tokens belonging to the same entity are given an I- prefix. An O tag indicates that the
token does not belong to any entity. For example, the following sentence:

Jeff Dean is a computer scientist at Google in California

would be labeled in IOB2 format as shown in Table 4-1.

Table 4-1. An example of a sequence annotated with named entities

Tokens Jeff Dean is a computer scientist at Google in California

Tags B-PER I-PER O O O O O B-ORG O B-LOC

To load one of the PAN-X subsets in XTREME, we’ll need to know which dataset
configuration to pass the load_dataset() function. Whenever you’re dealing with a
dataset that has multiple domains, you can use the get_dataset_config_names()
function to find out which subsets are available:
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from datasets import get_dataset_config_names

xtreme_subsets = get_dataset_config_names("xtreme")
print(f"XTREME has {len(xtreme_subsets)} configurations")

XTREME has 183 configurations

Whoa, that’s a lot of configurations! Let’s narrow the search by just looking for the
configurations that start with “PAN”:

panx_subsets = [s for s in xtreme_subsets if s.startswith("PAN")]
panx_subsets[:3]

['PAN-X.af', 'PAN-X.ar', 'PAN-X.bg']

OK, it seems we’ve identified the syntax of the PAN-X subsets: each one has a two-
letter suffix that appears to be an ISO 639-1 language code. This means that to load
the German corpus, we pass the de code to the name argument of load_dataset() as
follows:

from datasets import load_dataset

load_dataset("xtreme", name="PAN-X.de")

To make a realistic Swiss corpus, we’ll sample the German (de), French (fr), Italian
(it), and English (en) corpora from PAN-X according to their spoken proportions.
This will create a language imbalance that is very common in real-world datasets,
where acquiring labeled examples in a minority language can be expensive due to the
lack of domain experts who are fluent in that language. This imbalanced dataset will
simulate a common situation when working on multilingual applications, and we’ll
see how we can build a model that works on all languages.

To keep track of each language, let’s create a Python defaultdict that stores the lan‐
guage code as the key and a PAN-X corpus of type DatasetDict as the value:

from collections import defaultdict
from datasets import DatasetDict

langs = ["de", "fr", "it", "en"]
fracs = [0.629, 0.229, 0.084, 0.059]
# Return a DatasetDict if a key doesn't exist
panx_ch = defaultdict(DatasetDict)

for lang, frac in zip(langs, fracs):
    # Load monolingual corpus
    ds = load_dataset("xtreme", name=f"PAN-X.{lang}")
    # Shuffle and downsample each split according to spoken proportion
    for split in ds:
        panx_ch[lang][split] = (
            ds[split]
            .shuffle(seed=0)
            .select(range(int(frac * ds[split].num_rows))))
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Here we’ve used the shuffle() method to make sure we don’t accidentally bias our
dataset splits, while select() allows us to downsample each corpus according to the
values in fracs. Let’s have a look at how many examples we have per language in the
training sets by accessing the Dataset.num_rows attribute:

import pandas as pd

pd.DataFrame({lang: [panx_ch[lang]["train"].num_rows] for lang in langs},
             index=["Number of training examples"])

de fr it en

Number of training examples 12580 4580 1680 1180

By design, we have more examples in German than all other languages combined, so
we’ll use it as a starting point from which to perform zero-shot cross-lingual transfer
to French, Italian, and English. Let’s inspect one of the examples in the German
corpus:

element = panx_ch["de"]["train"][0]
for key, value in element.items():
    print(f"{key}: {value}")

langs: ['de', 'de', 'de', 'de', 'de', 'de', 'de', 'de', 'de', 'de', 'de', 'de']
ner_tags: [0, 0, 0, 0, 5, 6, 0, 0, 5, 5, 6, 0]
tokens: ['2.000', 'Einwohnern', 'an', 'der', 'Danziger', 'Bucht', 'in', 'der',
'polnischen', 'Woiwodschaft', 'Pommern', '.']

As with our previous encounters with Dataset objects, the keys of our example corre‐
spond to the column names of an Arrow table, while the values denote the entries in
each column. In particular, we see that the ner_tags column corresponds to the map‐
ping of each entity to a class ID. This is a bit cryptic to the human eye, so let’s create a
new column with the familiar LOC, PER, and ORG tags. To do this, the first thing to
notice is that our Dataset object has a features attribute that specifies the underly‐
ing data types associated with each column:

for key, value in panx_ch["de"]["train"].features.items():
    print(f"{key}: {value}")

tokens: Sequence(feature=Value(dtype='string', id=None), length=-1, id=None)
ner_tags: Sequence(feature=ClassLabel(num_classes=7, names=['O', 'B-PER',
'I-PER', 'B-ORG', 'I-ORG', 'B-LOC', 'I-LOC'], names_file=None, id=None),
length=-1, id=None)
langs: Sequence(feature=Value(dtype='string', id=None), length=-1, id=None)

The Sequence class specifies that the field contains a list of features, which in the case
of ner_tags corresponds to a list of ClassLabel features. Let’s pick out this feature
from the training set as follows:
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tags = panx_ch["de"]["train"].features["ner_tags"].feature
print(tags)

ClassLabel(num_classes=7, names=['O', 'B-PER', 'I-PER', 'B-ORG', 'I-ORG',
'B-LOC', 'I-LOC'], names_file=None, id=None)

We can use the ClassLabel.int2str() method that we encountered in Chapter 2 to
create a new column in our training set with class names for each tag. We’ll use the
map() method to return a dict with the key corresponding to the new column name
and the value as a list of class names:

def create_tag_names(batch):
    return {"ner_tags_str": [tags.int2str(idx) for idx in batch["ner_tags"]]}

panx_de = panx_ch["de"].map(create_tag_names)

Now that we have our tags in human-readable format, let’s see how the tokens and
tags align for the first example in the training set:

de_example = panx_de["train"][0]
pd.DataFrame([de_example["tokens"], de_example["ner_tags_str"]],
['Tokens', 'Tags'])

0 1 2 3 4 5 6 7 8 9 10 11

Tokens 2.000 Einwohnern an der Danziger Bucht in der polnischen Woiwodschaft Pommern .

Tags O O O O B-LOC I-LOC O O B-LOC B-LOC I-LOC O

The presence of the LOC tags make sense since the sentence “2,000 Einwohnern an der
Danziger Bucht in der polnischen Woiwodschaft Pommern” means “2,000 inhabi‐
tants at the Gdansk Bay in the Polish voivodeship of Pomerania” in English, and
Gdansk Bay is a bay in the Baltic sea, while “voivodeship” corresponds to a state in
Poland.

As a quick check that we don’t have any unusual imbalance in the tags, let’s calculate
the frequencies of each entity across each split:

from collections import Counter

split2freqs = defaultdict(Counter)
for split, dataset in panx_de.items():
    for row in dataset["ner_tags_str"]:
        for tag in row:
            if tag.startswith("B"):
                tag_type = tag.split("-")[1]
                split2freqs[split][tag_type] += 1
pd.DataFrame.from_dict(split2freqs, orient="index")

ORG LOC PER

validation 2683 3172 2893
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ORG LOC PER

test 2573 3180 3071

train 5366 6186 5810

This looks good—the distributions of the PER, LOC, and ORG frequencies are roughly
the same for each split, so the validation and test sets should provide a good measure
of our NER tagger’s ability to generalize. Next, let’s look at a few popular multilingual
transformers and how they can be adapted to tackle our NER task.

Multilingual Transformers
Multilingual transformers involve similar architectures and training procedures as
their monolingual counterparts, except that the corpus used for pretraining consists
of documents in many languages. A remarkable feature of this approach is that
despite receiving no explicit information to differentiate among the languages, the
resulting linguistic representations are able to generalize well across languages for a
variety of downstream tasks. In some cases, this ability to perform cross-lingual
transfer can produce results that are competitive with those of monolingual models,
which circumvents the need to train one model per language!

To measure the progress of cross-lingual transfer for NER, the CoNLL-2002 and
CoNLL-2003 datasets are often used as a benchmark for English, Dutch, Spanish, and
German. This benchmark consists of news articles annotated with the same LOC, PER,
and ORG categories as PAN-X, but it contains an additional MISC label for miscellane‐
ous entities that do not belong to the previous three groups. Multilingual transformer
models are usually evaluated in three different ways:

en

Fine-tune on the English training data and then evaluate on each language’s test
set.

each

Fine-tune and evaluate on monolingual test data to measure per-language
performance.

all

Fine-tune on all the training data to evaluate on all on each language’s test set.

We will adopt a similar evaluation strategy for our NER task, but first we need to
select a model to evaluate. One of the first multilingual transformers was mBERT,
which uses the same architecture and pretraining objective as BERT but adds Wikipe‐
dia articles from many languages to the pretraining corpus. Since then, mBERT has
been superseded by XLM-RoBERTa (or XLM-R for short), so that’s the model we’ll
consider in this chapter.
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As we saw in Chapter 3, XLM-R uses only MLM as a pretraining objective for 100
languages, but is distinguished by the huge size of its pretraining corpus compared to
its predecessors: Wikipedia dumps for each language and 2.5 terabytes of Common
Crawl data from the web. This corpus is several orders of magnitude larger than the
ones used in earlier models and provides a significant boost in signal for low-resource
languages like Burmese and Swahili, where only a small number of Wikipedia articles
exist.

The RoBERTa part of the model’s name refers to the fact that the pretraining
approach is the same as for the monolingual RoBERTa models. RoBERTa’s developers
improved on several aspects of BERT, in particular by removing the next sentence
prediction task altogether.3 XLM-R also drops the language embeddings used in XLM
and uses SentencePiece to tokenize the raw texts directly.4 Besides its multilingual
nature, a notable difference between XLM-R and RoBERTa is the size of the respec‐
tive vocabularies: 250,000 tokens versus 55,000!

XLM-R is a great choice for multilingual NLU tasks. In the next section, we’ll explore
how it can efficiently tokenize across many languages.

A Closer Look at Tokenization
Instead of using a WordPiece tokenizer, XLM-R uses a tokenizer called SentencePiece
that is trained on the raw text of all one hundred languages. To get a feel for how Sen‐
tencePiece compares to WordPiece, let’s load the BERT and XLM-R tokenizers in the
usual way with  Transformers:

from transformers import AutoTokenizer

bert_model_name = "bert-base-cased"
xlmr_model_name = "xlm-roberta-base"
bert_tokenizer = AutoTokenizer.from_pretrained(bert_model_name)
xlmr_tokenizer = AutoTokenizer.from_pretrained(xlmr_model_name)

By encoding a small sequence of text we can also retrieve the special tokens that each
model used during pretraining:

text = "Jack Sparrow loves New York!"
bert_tokens = bert_tokenizer(text).tokens()
xlmr_tokens = xlmr_tokenizer(text).tokens()

BERT [CLS] Jack Spa ##rrow loves New York ! [SEP] None
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XLM-R <s> ▁Jack ▁Spar row ▁love s ▁New ▁York ! </s>

Here we see that instead of the [CLS] and [SEP] tokens that BERT uses for sentence
classification tasks, XLM-R uses <s> and <\s> to denote the start and end of a
sequence. These tokens are added in the final stage of tokenization, as we’ll see next.

The Tokenizer Pipeline
So far we have treated tokenization as a single operation that transforms strings to
integers we can pass through the model. This is not entirely accurate, and if we take a
closer look we can see that it is actually a full processing pipeline that usually consists
of four steps, as shown in Figure 4-1.

Figure 4-1. The steps in the tokenization pipeline

Let’s take a closer look at each processing step and illustrate their effect with the
example sentence “Jack Sparrow loves New York!”:

Normalization
This step corresponds to the set of operations you apply to a raw string to make it
“cleaner.” Common operations include stripping whitespace and removing accen‐
ted characters. Unicode normalization is another common normalization opera‐
tion applied by many tokenizers to deal with the fact that there often exist various
ways to write the same character. This can make two versions of the “same” string
(i.e., with the same sequence of abstract characters) appear different; Unicode
normalization schemes like NFC, NFD, NFKC, and NFKD replace the various
ways to write the same character with standard forms. Another example of nor‐
malization is lowercasing. If the model is expected to only accept and use lower‐
case characters, this technique can be used to reduce the size of the vocabulary it
requires. After normalization, our example string would look like “jack sparrow
loves new york!”.

Pretokenization
This step splits a text into smaller objects that give an upper bound to what your
tokens will be at the end of training. A good way to think of this is that the preto‐
kenizer will split your text into “words,” and your final tokens will be parts of
those words. For the languages that allow this (English, German, and many Indo-
European languages), strings can typically be split into words on whitespace and
punctuation. For example, this step might transform our ["jack", "sparrow",
"loves", "new", "york", "!"]. These words are then simpler to split into
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subwords with Byte-Pair Encoding (BPE) or Unigram algorithms in the next step
of the pipeline. However, splitting into “words” is not always a trivial and deter‐
ministic operation, or even an operation that makes sense. For instance, in lan‐
guages like Chinese, Japanese, or Korean, grouping symbols in semantic units
like Indo-European words can be a nondeterministic operation with several
equally valid groups. In this case, it might be best to not pretokenize the text and
instead use a language-specific library for pretokenization.

Tokenizer model
Once the input texts are normalized and pretokenized, the tokenizer applies a
subword splitting model on the words. This is the part of the pipeline that needs
to be trained on your corpus (or that has been trained if you are using a pre‐
trained tokenizer). The role of the model is to split the words into subwords to
reduce the size of the vocabulary and try to reduce the number of out-of-
vocabulary tokens. Several subword tokenization algorithms exist, including
BPE, Unigram, and WordPiece. For instance, our running example might look
like [jack, spa, rrow, loves, new, york, !] after the tokenizer model is
applied. Note that at this point we no longer have a list of strings but a list of inte‐
gers (input IDs); to keep the example illustrative, we’ve kept the words but drop‐
ped the quotes to indicate the transformation.

Postprocessing
This is the last step of the tokenization pipeline, in which some additional trans‐
formations can be applied on the list of tokens—for instance, adding special
tokens at the beginning or end of the input sequence of token indices. For exam‐
ple, a BERT-style tokenizer would add classifications and separator tokens: [CLS,
jack, spa, rrow, loves, new, york, !, SEP]. This sequence (recall that this
will be a sequence of integers, not the tokens you see here) can then be fed to the
model.

Going back to our comparison of XLM-R and BERT, we now understand that Senten‐
cePiece adds <s> and <\s> instead of [CLS] and [SEP] in the postprocessing step (as a
convention, we’ll continue to use [CLS] and [SEP] in the graphical illustrations). Let’s
go back to the SentencePiece tokenizer to see what makes it special.

The SentencePiece Tokenizer
The SentencePiece tokenizer is based on a type of subword segmentation called
Unigram and encodes each input text as a sequence of Unicode characters. This last
feature is especially useful for multilingual corpora since it allows SentencePiece to be
agnostic about accents, punctuation, and the fact that many languages, like Japanese,
do not have whitespace characters. Another special feature of SentencePiece is that
whitespace is assigned the Unicode symbol U+2581, or the ▁ character, also called
the lower one quarter block character. This enables SentencePiece to detokenize a
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sequence without ambiguities and without relying on language-specific pretokeniz‐
ers. In our example from the previous section, for instance, we can see that Word‐
Piece has lost the information that there is no whitespace between “York” and “!”. By
contrast, SentencePiece preserves the whitespace in the tokenized text so we can con‐
vert back to the raw text without ambiguity:

"".join(xlmr_tokens).replace(u"\u2581", " ")

'<s> Jack Sparrow loves New York!</s>'

Now that we understand how SentencePiece works, let’s see how we can encode our
simple example in a form suitable for NER. The first thing to do is load the pretrained
model with a token classification head. But instead of loading this head directly from

 Transformers, we will build it ourselves! By diving deeper into the  Transformers
API, we can do this with just a few steps.

Transformers for Named Entity Recognition
In Chapter 2, we saw that for text classification BERT uses the special [CLS] token to
represent an entire sequence of text. This representation is then fed through a fully
connected or dense layer to output the distribution of all the discrete label values, as
shown in Figure 4-2.

Figure 4-2. Fine-tuning an encoder-based transformer for sequence classification
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5 J. Devlin et al., “BERT: Pre-Training of Deep Bidirectional Transformers for Language Understanding”,
(2018).

BERT and other encoder-only transformers take a similar approach for NER, except
that the representation of each individual input token is fed into the same fully
connected layer to output the entity of the token. For this reason, NER is often
framed as a token classification task. The process looks something like the diagram in
Figure 4-3.

Figure 4-3. Fine-tuning an encoder-based transformer for named entity recognition

So far, so good, but how should we handle subwords in a token classification task?
For example, the first name “Christa” in Figure 4-3 is tokenized into the subwords
“Chr” and “##ista”, so which one(s) should be assigned the B-PER label?

In the BERT paper,5 the authors assigned this label to the first subword (“Chr” in our
example) and ignored the following subword (“##ista”). This is the convention we’ll
adopt here, and we’ll indicate the ignored subwords with IGN. We can later easily
propagate the predicted label of the first subword to the subsequent subwords in the
postprocessing step. We could also have chosen to include the representation of the
“##ista” subword by assigning it a copy of the B-LOC label, but this violates the IOB2
format.

Fortunately, all the architecture aspects we’ve seen in BERT carry over to XLM-R
since its architecture is based on RoBERTa, which is identical to BERT! Next we’ll see
how  Transformers supports many other tasks with minor modifications.
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The Anatomy of the Transformers Model Class
 Transformers is organized around dedicated classes for each architecture and task.

The model classes associated with different tasks are named according to a <Model
Name>For<Task> convention, or AutoModelFor<Task> when using the AutoModel
classes.

However, this approach has its limitations, and to motivate going deeper into the 
 Transformers API, consider the following scenario. Suppose you have a great idea

to solve an NLP problem that has been on your mind for a long time with a trans‐
former model. So you set up a meeting with your boss and, with an artfully crafted
PowerPoint presentation, you pitch that you could increase the revenue of your
department if you can finally solve the problem. Impressed with your colorful presen‐
tation and talk of profits, your boss generously agrees to give you one week to build a
proof-of-concept. Happy with the outcome, you start working straight away. You fire
up your GPU and open a notebook. You execute from transformers import Bert
ForTaskXY (note that TaskXY is the imaginary task you would like to solve) and color
escapes your face as the dreaded red color fills your screen: ImportError: cannot
import name BertForTaskXY. Oh no, there is no BERT model for your use case! How
can you complete the project in one week if you have to implement the whole model
yourself?! Where should you even start?

Don’t panic!  Transformers is designed to enable you to easily extend existing mod‐
els for your specific use case. You can load the weights from pretrained models, and
you have access to task-specific helper functions. This lets you build custom models
for specific objectives with very little overhead. In this section, we’ll see how we can
implement our own custom model.

Bodies and Heads
The main concept that makes  Transformers so versatile is the split of the architec‐
ture into a body and head (as we saw in Chapter 1). We have already seen that when
we switch from the pretraining task to the downstream task, we need to replace the
last layer of the model with one that is suitable for the task. This last layer is called the
model head; it’s the part that is task-specific. The rest of the model is called the body;
it includes the token embeddings and transformer layers that are task-agnostic. This
structure is reflected in the  Transformers code as well: the body of a model is
implemented in a class such as BertModel or GPT2Model that returns the hidden states
of the last layer. Task-specific models such as BertForMaskedLM or BertForSequence
Classification use the base model and add the necessary head on top of the hidden
states, as shown in Figure 4-4.
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Figure 4-4. The BertModel class only contains the body of the model, while the Bert
For<Task> classes combine the body with a dedicated head for a given task

As we’ll see next, this separation of bodies and heads allows us to build a custom head
for any task and just mount it on top of a pretrained model.

Creating a Custom Model for Token Classification
Let’s go through the exercise of building a custom token classification head for XLM-
R. Since XLM-R uses the same model architecture as RoBERTa, we will use RoBERTa
as the base model, but augmented with settings specific to XLM-R. Note that this is
an educational exercise to show you how to build a custom model for your own task.
For token classification, an XLMRobertaForTokenClassification class already exists
that you can import from  Transformers. If you want, you can skip to the next sec‐
tion and simply use that one.

To get started, we need a data structure that will represent our XLM-R NER tagger. As
a first guess, we’ll need a configuration object to initialize the model and a forward()
function to generate the outputs. Let’s go ahead and build our XLM-R class for token
classification:

import torch.nn as nn
from transformers import XLMRobertaConfig
from transformers.modeling_outputs import TokenClassifierOutput
from transformers.models.roberta.modeling_roberta import RobertaModel
from transformers.models.roberta.modeling_roberta import RobertaPreTrainedModel

class XLMRobertaForTokenClassification(RobertaPreTrainedModel):
    config_class = XLMRobertaConfig

    def __init__(self, config):
        super().__init__(config)
        self.num_labels = config.num_labels
        # Load model body
        self.roberta = RobertaModel(config, add_pooling_layer=False)
        # Set up token classification head
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        self.classifier = nn.Linear(config.hidden_size, config.num_labels)
        # Load and initialize weights
        self.init_weights()

    def forward(self, input_ids=None, attention_mask=None, token_type_ids=None,
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                labels=None, **kwargs):
        # Use model body to get encoder representations
        outputs = self.roberta(input_ids, attention_mask=attention_mask,
                               token_type_ids=token_type_ids, **kwargs)
        # Apply classifier to encoder representation
        sequence_output = self.dropout(outputs[0])
        logits = self.classifier(sequence_output)
        # Calculate losses
        loss = None
        if labels is not None:
            loss_fct = nn.CrossEntropyLoss()
            loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
        # Return model output object
        return TokenClassifierOutput(loss=loss, logits=logits,
                                     hidden_states=outputs.hidden_states,
                                     attentions=outputs.attentions)

The config_class ensures that the standard XLM-R settings are used when we initi‐
alize a new model. If you want to change the default parameters, you can do this by
overwriting the default settings in the configuration. With the super() method we
call the initialization function of the RobertaPreTrainedModel class. This abstract
class handles the initialization or loading of pretrained weights. Then we load our
model body, which is RobertaModel, and extend it with our own classification head
consisting of a dropout and a standard feed-forward layer. Note that we set add_
pooling_layer=False to ensure all hidden states are returned and not only the one
associated with the [CLS] token. Finally, we initialize all the weights by calling the
init_weights() method we inherit from RobertaPreTrainedModel, which will load
the pretrained weights for the model body and randomly initialize the weights of our
token classification head.

The only thing left to do is to define what the model should do in a forward pass with
a forward() method. During the forward pass, the data is first fed through the model
body. There are a number of input variables, but the only ones we need for now are
input_ids and attention_mask. The hidden state, which is part of the model body
output, is then fed through the dropout and classification layers. If we also provide
labels in the forward pass, we can directly calculate the loss. If there is an attention
mask we need to do a little bit more work to make sure we only calculate the loss of
the unmasked tokens. Finally, we wrap all the outputs in a TokenClassifierOutput
object that allows us to access elements in a the familiar named tuple from previous
chapters.

By just implementing two functions of a simple class, we can build our own custom
transformer model. And since we inherit from a PreTrainedModel, we instantly get
access to all the useful  Transformer utilities, such as from_pretrained()! Let’s
have a look how we can load pretrained weights into our custom model.
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Loading a Custom Model
Now we are ready to load our token classification model. We’ll need to provide some
additional information beyond the model name, including the tags that we will use to
label each entity and the mapping of each tag to an ID and vice versa. All of this
information can be derived from our tags variable, which as a ClassLabel object has
a names attribute that we can use to derive the mapping:

index2tag = {idx: tag for idx, tag in enumerate(tags.names)}
tag2index = {tag: idx for idx, tag in enumerate(tags.names)}

We’ll store these mappings and the tags.num_classes attribute in the AutoConfig
object that we encountered in Chapter 3. Passing keyword arguments to the from_pre
trained() method overrides the default values:

from transformers import AutoConfig

xlmr_config = AutoConfig.from_pretrained(xlmr_model_name,
                                         num_labels=tags.num_classes,
                                         id2label=index2tag, label2id=tag2index)

The AutoConfig class contains the blueprint of a model’s architecture. When we load
a model with AutoModel.from_pretrained(model_ckpt), the configuration file asso‐
ciated with that model is downloaded automatically. However, if we want to modify
something like the number of classes or label names, then we can load the configura‐
tion first with the parameters we would like to customize.

Now, we can load the model weights as usual with the from_pretrained() function
with the additional config argument. Note that we did not implement loading pre‐
trained weights in our custom model class; we get this for free by inheriting from
RobertaPreTrainedModel:

import torch

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
xlmr_model = (XLMRobertaForTokenClassification
              .from_pretrained(xlmr_model_name, config=xlmr_config)
              .to(device))

As a quick check that we have initialized the tokenizer and model correctly, let’s test
the predictions on our small sequence of known entities:

input_ids = xlmr_tokenizer.encode(text, return_tensors="pt")
pd.DataFrame([xlmr_tokens, input_ids[0].numpy()], index=["Tokens", "Input IDs"])

0 1 2 3 4 5 6 7 8 9

Tokens <s> ▁Jack ▁Spar row ▁love s ▁New ▁York ! </s>

Input IDs 0 21763 37456 15555 5161 7 2356 5753 38 2
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As you can see here, the start <s> and end </s> tokens are given the IDs 0 and 2,
respectively.

Finally, we need to pass the inputs to the model and extract the predictions by taking
the argmax to get the most likely class per token:

outputs = xlmr_model(input_ids.to(device)).logits
predictions = torch.argmax(outputs, dim=-1)
print(f"Number of tokens in sequence: {len(xlmr_tokens)}")
print(f"Shape of outputs: {outputs.shape}")

Number of tokens in sequence: 10
Shape of outputs: torch.Size([1, 10, 7])

Here we see that the logits have the shape [batch_size, num_tokens, num_tags],
with each token given a logit among the seven possible NER tags. By enumerating
over the sequence, we can quickly see what the pretrained model predicts:

preds = [tags.names[p] for p in predictions[0].cpu().numpy()]
pd.DataFrame([xlmr_tokens, preds], index=["Tokens", "Tags"])

0 1 2 3 4 5 6 7 8 9

Tokens <s> ▁Jack ▁Spar row ▁love s ▁New ▁York ! </s>

Tags O I-LOC B-LOC B-LOC O I-LOC O O I-LOC B-LOC

Unsurprisingly, our token classification layer with random weights leaves a lot to be
desired; let’s fine-tune on some labeled data to make it better! Before doing so, let’s
wrap the preceding steps into a helper function for later use:

def tag_text(text, tags, model, tokenizer):
    # Get tokens with special characters
    tokens = tokenizer(text).tokens()
    # Encode the sequence into IDs
    input_ids = xlmr_tokenizer(text, return_tensors="pt").input_ids.to(device)
    # Get predictions as distribution over 7 possible classes
    outputs = model(inputs)[0]
    # Take argmax to get most likely class per token
    predictions = torch.argmax(outputs, dim=2)
    # Convert to DataFrame
    preds = [tags.names[p] for p in predictions[0].cpu().numpy()]
    return pd.DataFrame([tokens, preds], index=["Tokens", "Tags"])

Before we can train the model, we also need to tokenize the inputs and prepare the
labels. We’ll do that next.
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Tokenizing Texts for NER
Now that we’ve established that the tokenizer and model can encode a single example,
our next step is to tokenize the whole dataset so that we can pass it to the XLM-R
model for fine-tuning. As we saw in Chapter 2,  Datasets provides a fast way to
tokenize a Dataset object with the map() operation. To achieve this, recall that we
first need to define a function with the minimal signature:

function(examples: Dict[str, List]) -> Dict[str, List]

where examples is equivalent to a slice of a Dataset, e.g., panx_de['train'][:10].
Since the XLM-R tokenizer returns the input IDs for the model’s inputs, we just need
to augment this information with the attention mask and the label IDs that encode
the information about which token is associated with each NER tag.

Following the approach taken in the  Transformers documentation, let’s look at
how this works with our single German example by first collecting the words and tags
as ordinary lists:

words, labels = de_example["tokens"], de_example["ner_tags"]

Next, we tokenize each word and use the is_split_into_words argument to tell the
tokenizer that our input sequence has already been split into words:

tokenized_input = xlmr_tokenizer(de_example["tokens"], is_split_into_words=True)
tokens = xlmr_tokenizer.convert_ids_to_tokens(tokenized_input["input_ids"])
pd.DataFrame([tokens], index=["Tokens"])

0 1 2 3 4 5 6 ... 18 19 20 21 22 23 24

Tokens <s> ▁2.000 ▁Einwohner n ▁an ▁der ▁Dan ... schaft ▁Po mmer n ▁ . </s>

In this example we can see that the tokenizer has split “Einwohnern” into two sub‐
words, “▁Einwohner” and “n”. Since we’re following the convention that only
“▁Einwohner” should be associated with the B-LOC label, we need a way to mask the
subword representations after the first subword. Fortunately, tokenized_input is a
class that contains a word_ids() function that can help us achieve this:

word_ids = tokenized_input.word_ids()
pd.DataFrame([tokens, word_ids], index=["Tokens", "Word IDs"])

0 1 2 3 4 5 6 ... 18 19 20 21 22 23 24

Tokens <s> ▁2.000 ▁Einwohner n ▁an ▁der ▁Dan ... schaft ▁Po mmer n ▁ . </s>

Word
IDs

None 0 1 1 2 3 4 ... 9 10 10 10 11 11 None
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Here we can see that word_ids has mapped each subword to the corresponding index
in the words sequence, so the first subword, “▁2.000”, is assigned the index 0, while
“▁Einwohner” and “n” are assigned the index 1 (since “Einwohnern” is the second
word in words). We can also see that special tokens like <s> and <\s> are mapped to
None. Let’s set –100 as the label for these special tokens and the subwords we wish to
mask during training:

previous_word_idx = None
label_ids = []

for word_idx in word_ids:
    if word_idx is None or word_idx == previous_word_idx:
        label_ids.append(-100)
    elif word_idx != previous_word_idx:
        label_ids.append(labels[word_idx])
    previous_word_idx = word_idx

labels = [index2tag[l] if l != -100 else "IGN" for l in label_ids]
index = ["Tokens", "Word IDs", "Label IDs", "Labels"]

pd.DataFrame([tokens, word_ids, label_ids, labels], index=index)

0 1 2 3 4 5 ... 19 20 21 22 23 24

Tokens <s> ▁2.000 ▁Einwohner n ▁an ▁der ... ▁Po mmer n ▁ . </s>

Word IDs None 0 1 1 2 3 ... 10 10 10 11 11 None

Label IDs -100 0 0 -100 0 0 ... 6 -100 -100 0 -100 -100

Labels IGN O O IGN O O ... I-LOC IGN IGN O IGN IGN

Why did we choose –100 as the ID to mask subword representa‐
tions? The reason is that in PyTorch the cross-entropy loss class
torch.nn.CrossEntropyLoss has an attribute called ignore_index
whose value is –100. This index is ignored during training, so we
can use it to ignore the tokens associated with consecutive
subwords.

And that’s it! We can clearly see how the label IDs align with the tokens, so let’s scale
this out to the whole dataset by defining a single function that wraps all the logic:

def tokenize_and_align_labels(examples):
    tokenized_inputs = xlmr_tokenizer(examples["tokens"], truncation=True,
                                      is_split_into_words=True)
    labels = []
    for idx, label in enumerate(examples["ner_tags"]):
        word_ids = tokenized_inputs.word_ids(batch_index=idx)
        previous_word_idx = None
        label_ids = []
        for word_idx in word_ids:
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            if word_idx is None or word_idx == previous_word_idx:
                label_ids.append(-100)
            else:
                label_ids.append(label[word_idx])
            previous_word_idx = word_idx
        labels.append(label_ids)
    tokenized_inputs["labels"] = labels
    return tokenized_inputs

We now have all the ingredients we need to encode each split, so let’s write a function
we can iterate over:

def encode_panx_dataset(corpus):
    return corpus.map(tokenize_and_align_labels, batched=True,
                      remove_columns=['langs', 'ner_tags', 'tokens'])

By applying this function to a DatasetDict object, we get an encoded Dataset object
per split. Let’s use this to encode our German corpus:

panx_de_encoded = encode_panx_dataset(panx_ch["de"])

Now that we have a model and a dataset, we need to define a performance metric.

Performance Measures
Evaluating a NER model is similar to evaluating a text classification model, and it is
common to report results for precision, recall, and F1-score. The only subtlety is that
all words of an entity need to be predicted correctly in order for a prediction to be
counted as correct. Fortunately, there is a nifty library called seqeval that is designed
for these kinds of tasks. For example, given some placeholder NER tags and model
predictions, we can compute the metrics via seqeval’s classification_report()
function:

from seqeval.metrics import classification_report

y_true = [["O", "O", "O", "B-MISC", "I-MISC", "I-MISC", "O"],
          ["B-PER", "I-PER", "O"]]
y_pred = [["O", "O", "B-MISC", "I-MISC", "I-MISC", "I-MISC", "O"],
          ["B-PER", "I-PER", "O"]]
print(classification_report(y_true, y_pred))

              precision    recall  f1-score   support

        MISC       0.00      0.00      0.00         1
         PER       1.00      1.00      1.00         1

   micro avg       0.50      0.50      0.50         2
   macro avg       0.50      0.50      0.50         2
weighted avg       0.50      0.50      0.50         2

As we can see, seqeval expects the predictions and labels as lists of lists, with each list
corresponding to a single example in our validation or test sets. To integrate these
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metrics during training, we need a function that can take the outputs of the model
and convert them into the lists that seqeval expects. The following does the trick by
ensuring we ignore the label IDs associated with subsequent subwords:

import numpy as np

def align_predictions(predictions, label_ids):
    preds = np.argmax(predictions, axis=2)
    batch_size, seq_len = preds.shape
    labels_list, preds_list = [], []

    for batch_idx in range(batch_size):
        example_labels, example_preds = [], []
        for seq_idx in range(seq_len):
            # Ignore label IDs = -100
            if label_ids[batch_idx, seq_idx] != -100:
                example_labels.append(index2tag[label_ids[batch_idx][seq_idx]])
                example_preds.append(index2tag[preds[batch_idx][seq_idx]])

        labels_list.append(example_labels)
        preds_list.append(example_preds)

    return preds_list, labels_list

Equipped with a performance metric, we can move on to actually training the model.

Fine-Tuning XLM-RoBERTa
We now have all the ingredients to fine-tune our model! Our first strategy will be to
fine-tune our base model on the German subset of PAN-X and then evaluate its zero-
shot cross-lingual performance on French, Italian, and English. As usual, we’ll use the

 Transformers Trainer to handle our training loop, so first we need to define the
training attributes using the TrainingArguments class:

from transformers import TrainingArguments

num_epochs = 3
batch_size = 24
logging_steps = len(panx_de_encoded["train"]) // batch_size
model_name = f"{xlmr_model_name}-finetuned-panx-de"
training_args = TrainingArguments(
    output_dir=model_name, log_level="error", num_train_epochs=num_epochs,
    per_device_train_batch_size=batch_size,
    per_device_eval_batch_size=batch_size, evaluation_strategy="epoch",
    save_steps=1e6, weight_decay=0.01, disable_tqdm=False,
    logging_steps=logging_steps, push_to_hub=True)

Here we evaluate the model’s predictions on the validation set at the end of every
epoch, tweak the weight decay, and set save_steps to a large number to disable
checkpointing and thus speed up training.
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This is also a good point to make sure we are logged in to the Hugging Face Hub (if
you’re working in a terminal, you can execute the command huggingface-cli login
instead):

from huggingface_hub import notebook_login

notebook_login()

We also need to tell the Trainer how to compute metrics on the validation set, so
here we can use the align_predictions() function that we defined earlier to extract
the predictions and labels in the format needed by seqeval to calculate the F1-score:

from seqeval.metrics import f1_score

def compute_metrics(eval_pred):
    y_pred, y_true = align_predictions(eval_pred.predictions,
                                       eval_pred.label_ids)
    return {"f1": f1_score(y_true, y_pred)}

The final step is to define a data collator so we can pad each input sequence to the
largest sequence length in a batch.  Transformers provides a dedicated data collator
for token classification that will pad the labels along with the inputs:

from transformers import DataCollatorForTokenClassification

data_collator = DataCollatorForTokenClassification(xlmr_tokenizer)

Padding the labels is necessary because, unlike in a text classification task, the labels
are also sequences. One important detail here is that the label sequences are padded
with the value –100, which, as we’ve seen, is ignored by PyTorch loss functions.

We will train several models in the course of this chapter, so we’ll avoid initializing a
new model for every Trainer by creating a model_init() method. This method loads
an untrained model and is called at the beginning of the train() call:

def model_init():
    return (XLMRobertaForTokenClassification
            .from_pretrained(xlmr_model_name, config=xlmr_config)
            .to(device))

We can now pass all this information together with the encoded datasets to the
Trainer:

from transformers import Trainer

trainer = Trainer(model_init=model_init, args=training_args,
                  data_collator=data_collator, compute_metrics=compute_metrics,
                  train_dataset=panx_de_encoded["train"],
                  eval_dataset=panx_de_encoded["validation"],
                  tokenizer=xlmr_tokenizer)

and then run the training loop as follows and push the final model to the Hub:
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trainer.train() trainer.push_to_hub(commit_message="Training completed!")

Epoch Training Loss Validation Loss F1

1 0.2652 0.160244 0.822974

2 0.1314 0.137195 0.852747

3 0.0806 0.138774 0.864591

These F1 scores are quite good for a NER model. To confirm that our model works as
expected, let’s test it on the German translation of our simple example:

text_de = "Jeff Dean ist ein Informatiker bei Google in Kalifornien"
tag_text(text_de, tags, trainer.model, xlmr_tokenizer)

0 1 2 3 4 5 ... 8 9 10 11 12 13

Tokens <s> ▁Jeff ▁De an ▁ist ▁ein ... ▁bei ▁Google ▁in ▁Kaliforni en </s>

Tags O B-PER I-PER I-PER O O ... O B-ORG O B-LOC I-LOC O

It works! But we should never get too confident about performance based on a single
example. Instead, we should conduct a proper and thorough investigation of the
model’s errors. In the next section we explore how to do this for the NER task.

Error Analysis
Before we dive deeper into the multilingual aspects of XLM-R, let’s take a minute to
investigate the errors of our model. As we saw in Chapter 2, a thorough error analysis
of your model is one of the most important aspects when training and debugging
transformers (and machine learning models in general). There are several failure
modes where it might look like the model is performing well, while in practice it has
some serious flaws. Examples where training can fail include:

• We might accidentally mask too many tokens and also mask some of our labels to
get a really promising loss drop.

• The compute_metrics() function might have a bug that overestimates the true
performance.

• We might include the zero class or O entity in NER as a normal class, which will
heavily skew the accuracy and F1-score since it is the majority class by a large
margin.

When the model performs much worse than expected, looking at the errors can yield
useful insights and reveal bugs that would be hard to spot by just looking at the code.
And even if the model performs well and there are no bugs in the code, error analysis
is still a useful tool to understand the model’s strengths and weaknesses. These are
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aspects we always need to keep in mind when we deploy a model in a production
environment.

For our analysis we will again use one of the most powerful tools at our disposal,
which is to look at the validation examples with the highest loss. We can reuse much
of the function we built to analyze the sequence classification model in Chapter 2, but
we’ll now calculate a loss per token in the sample sequence.

Let’s define a method that we can apply to the validation set:

from torch.nn.functional import cross_entropy

def forward_pass_with_label(batch):
    # Convert dict of lists to list of dicts suitable for data collator
    features = [dict(zip(batch, t)) for t in zip(*batch.values())]
    # Pad inputs and labels and put all tensors on device
    batch = data_collator(features)
    input_ids = batch["input_ids"].to(device)
    attention_mask = batch["attention_mask"].to(device)
    labels = batch["labels"].to(device)
    with torch.no_grad():
        # Pass data through model
        output = trainer.model(input_ids, attention_mask)
        # logit.size: [batch_size, sequence_length, classes]
        # Predict class with largest logit value on classes axis
        predicted_label = torch.argmax(output.logits, axis=-1).cpu().numpy()
    # Calculate loss per token after flattening batch dimension with view
    loss = cross_entropy(output.logits.view(-1, 7),
                         labels.view(-1), reduction="none")
    # Unflatten batch dimension and convert to numpy array
    loss = loss.view(len(input_ids), -1).cpu().numpy()

    return {"loss":loss, "predicted_label": predicted_label}

We can now apply this function to the whole validation set using map() and load all
the data into a DataFrame for further analysis:

valid_set = panx_de_encoded["validation"]
valid_set = valid_set.map(forward_pass_with_label, batched=True, batch_size=32)
df = valid_set.to_pandas()

The tokens and the labels are still encoded with their IDs, so let’s map the tokens and
labels back to strings to make it easier to read the results. For the padding tokens with
label –100 we assign a special label, IGN, so we can filter them later. We also get rid of
all the padding in the loss and predicted_label fields by truncating them to the
length of the inputs:

index2tag[-100] = "IGN"
df["input_tokens"] = df["input_ids"].apply(
    lambda x: xlmr_tokenizer.convert_ids_to_tokens(x))
df["predicted_label"] = df["predicted_label"].apply(
    lambda x: [index2tag[i] for i in x])
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df["labels"] = df["labels"].apply(
    lambda x: [index2tag[i] for i in x])
df['loss'] = df.apply(
    lambda x: x['loss'][:len(x['input_ids'])], axis=1)
df['predicted_label'] = df.apply(
    lambda x: x['predicted_label'][:len(x['input_ids'])], axis=1)
df.head(1)

attention_mask input_ids labels loss predicted_label input_tokens

0 [1, 1, 1, 1, 1, 1, 1] [0, 10699, 11,
15, 16104,
1388, 2]

[IGN, B-
ORG, IGN, I-
ORG, I-ORG,
I-ORG, IGN]

[0.0,
0.014679872, 0.0,
0.009469474,
0.010393422,
0.01293836, 0.0]

[I-ORG, B-ORG, I-ORG,
I-ORG, I-ORG, I-ORG, I-
ORG]

[<s>, ▁Ham, a, ▁(,
▁Unternehmen, ▁),
</s>]

Each column contains a list of tokens, labels, predicted labels, and so on for each
sample. Let’s have a look at the tokens individually by unpacking these lists. The
pandas.Series.explode() function allows us to do exactly that in one line by creat‐
ing a row for each element in the original rows list. Since all the lists in one row have
the same length, we can do this in parallel for all columns. We also drop the padding
tokens we named IGN, since their loss is zero anyway. Finally, we cast the losses, which
are still numpy.Array objects, to standard floats:

df_tokens = df.apply(pd.Series.explode)
df_tokens = df_tokens.query("labels != 'IGN'")
df_tokens["loss"] = df_tokens["loss"].astype(float).round(2)
df_tokens.head(7)

attention_mask input_ids labels loss predicted_label input_tokens

1 10699 B-ORG 0.01 B-ORG ▁Ham

1 15 I-ORG 0.01 I-ORG ▁(

1 16104 I-ORG 0.01 I-ORG ▁Unternehmen

1 1388 I-ORG 0.01 I-ORG ▁)

1 56530 O 0.00 O ▁WE

1 83982 B-ORG 0.34 B-ORG ▁Luz

1 10 I-ORG 0.45 I-ORG ▁a

With the data in this shape, we can now group it by the input tokens and aggregate
the losses for each token with the count, mean, and sum. Finally, we sort the
aggregated data by the sum of the losses and see which tokens have accumulated the
most loss in the validation set:

(
    df_tokens.groupby("input_tokens")[["loss"]]
    .agg(["count", "mean", "sum"])
    .droplevel(level=0, axis=1)  # Get rid of multi-level columns
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    .sort_values(by="sum", ascending=False)
    .reset_index()
    .round(2)
    .head(10)
    .T
)

0 1 2 3 4 5 6 7 8 9

input_tokens ▁ ▁der ▁in ▁von ▁/ ▁und ▁( ▁) ▁'' ▁A

count 6066 1388 989 808 163 1171 246 246 2898 125

mean 0.03 0.1 0.14 0.14 0.64 0.08 0.3 0.29 0.02 0.44

sum 200.71 138.05 137.33 114.92 104.28 99.15 74.49 72.35 59.31 54.48

We can observe several patterns in this list:

• The whitespace token has the highest total loss, which is not surprising since it is
also the most common token in the list. However, its mean loss is much lower
than the other tokens in the list. This means that the model doesn’t struggle to
classify it.

• Words like “in”, “von”, “der”, and “und” appear relatively frequently. They often
appear together with named entities and are sometimes part of them, which
explains why the model might mix them up.

• Parentheses, slashes, and capital letters at the beginning of words are rarer but
have a relatively high average loss. We will investigate them further.

We can also group the label IDs and look at the losses for each class:

(
    df_tokens.groupby("labels")[["loss"]]
    .agg(["count", "mean", "sum"])
    .droplevel(level=0, axis=1)
    .sort_values(by="mean", ascending=False)
    .reset_index()
    .round(2)
    .T
)

0 1 2 3 4 5 6

labels B-ORG I-LOC I-ORG B-LOC B-PER I-PER O

count 2683 1462 3820 3172 2893 4139 43648

mean 0.66 0.64 0.48 0.35 0.26 0.18 0.03

sum 1769.47 930.94 1850.39 1111.03 760.56 750.91 1354.46
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We see that B-ORG has the highest average loss, which means that determining the
beginning of an organization poses a challenge to our model.

We can break this down further by plotting the confusion matrix of the token classifi‐
cation, where we see that the beginning of an organization is often confused with the
subsequent I-ORG token:

from sklearn.metrics import ConfusionMatrixDisplay, confusion_matrix

def plot_confusion_matrix(y_preds, y_true, labels):
    cm = confusion_matrix(y_true, y_preds, normalize="true")
    fig, ax = plt.subplots(figsize=(6, 6))
    disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=labels)
    disp.plot(cmap="Blues", values_format=".2f", ax=ax, colorbar=False)
    plt.title("Normalized confusion matrix")
    plt.show()

plot_confusion_matrix(df_tokens["labels"], df_tokens["predicted_label"],
                      tags.names)

From the plot, we can see that our model tends to confuse the B-ORG and I-ORG enti‐
ties the most. Otherwise, it is quite good at classifying the remaining entities, which is
clear by the near diagonal nature of the confusion matrix.
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Now that we’ve examined the errors at the token level, let’s move on and look at
sequences with high losses. For this calculation, we’ll revisit our “unexploded” Data
Frame and calculate the total loss by summing over the loss per token. To do this, let’s
first write a function that helps us display the token sequences with the labels and the
losses:

def get_samples(df):
    for _, row in df.iterrows():
        labels, preds, tokens, losses = [], [], [], []
        for i, mask in enumerate(row["attention_mask"]):
            if i not in {0, len(row["attention_mask"])}:
                labels.append(row["labels"][i])
                preds.append(row["predicted_label"][i])
                tokens.append(row["input_tokens"][i])
                losses.append(f"{row['loss'][i]:.2f}")
        df_tmp = pd.DataFrame({"tokens": tokens, "labels": labels,
                               "preds": preds, "losses": losses}).T
        yield df_tmp

df["total_loss"] = df["loss"].apply(sum)
df_tmp = df.sort_values(by="total_loss", ascending=False).head(3)

for sample in get_samples(df_tmp):
    display(sample)

0 1 2 3 4 ... 13 14 15 16 17

tokens ▁'' 8 . ▁Juli ▁'' ... n ischen ▁Gar de </s>

labels B-ORG IGN IGN I-ORG I-ORG ... IGN IGN I-ORG IGN IGN

preds O O O O O ... I-ORG I-ORG I-ORG I-ORG O

losses 7.89 0.00 0.00 6.88 8.05 ... 0.00 0.00 0.01 0.00 0.00

0 1 2 3 4 ... 14 15 16 17 18

tokens ▁' ▁'' ▁Τ Κ ▁'' ... k ▁'' ▁' ala </s>

labels O O O IGN O ... IGN I-LOC I-LOC IGN IGN

preds O O B-ORG O O ... O O O O O

losses 0.00 0.00 3.59 0.00 0.00 ... 0.00 7.66 7.78 0.00 0.00

0 1 2 3 4 ... 10 11 12 13 14

tokens ▁United ▁Nations ▁Multi dimensional ▁Integra ... ▁the ▁Central ▁African ▁Republic </s>

labels B-PER I-PER I-PER IGN I-PER ... I-PER I-PER I-PER I-PER IGN

preds B-ORG I-ORG I-ORG I-ORG I-ORG ... I-
ORG

I-ORG I-ORG I-ORG I-
ORG

losses 6.46 5.59 5.51 0.00 5.11 ... 4.77 5.32 5.10 4.87 0.00
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It is apparent that something is wrong with the labels of these samples; for example,
the United Nations and the Central African Republic are each labeled as a person! At
the same time, “8. Juli” in the first example is labeled as an organization. It turns out
the annotations for the PAN-X dataset were generated through an automated process.
Such annotations are often referred to as “silver standard” (in contrast to the “gold
standard” of human-generated annotations), and it is no surprise that there are cases
where the automated approach failed to produce sensible labels. In fact, such failure
modes are not unique to automatic approaches; even when humans carefully anno‐
tate data, mistakes can occur when the concentration of the annotators fades or they
simply misunderstand the sentence.

Another thing we noticed earlier was that parentheses and slashes had a relatively
high loss. Let’s look at a few examples of sequences with an opening parenthesis:

df_tmp = df.loc[df["input_tokens"].apply(lambda x: u"\u2581(" in x)].head(2)
for sample in get_samples(df_tmp):
    display(sample)

0 1 2 3 4 5

tokens ▁Ham a ▁( ▁Unternehmen ▁) </s>

labels B-ORG IGN I-ORG I-ORG I-ORG IGN

preds B-ORG I-ORG I-ORG I-ORG I-ORG I-ORG

losses 0.01 0.00 0.01 0.01 0.01 0.00

0 1 2 3 4 5 6 7

tokens ▁Kesk kül a ▁( ▁Mart na ▁) </s>

labels B-LOC IGN IGN I-LOC I-LOC IGN I-LOC IGN

preds B-LOC I-LOC I-LOC I-LOC I-LOC I-LOC I-LOC I-LOC

losses 0.02 0.00 0.00 0.01 0.01 0.00 0.01 0.00

In general we would not include the parentheses and their contents as part of the
named entity, but this seems to be the way the automatic extraction annotated the
documents. In the other examples, the parentheses contain a geographic specification.
While this is indeed a location as well, we might want disconnect it from the original
location in the annotations. This dataset consists of Wikipedia articles in different
languages, and the article titles often contain some sort of explanation in parentheses.
For instance, in the first example the text in parentheses indicates that Hama is an
“Unternehmen,” or company in English. These are important details to know when
we roll out the model, as they might have implications on the downstream perfor‐
mance of the whole pipeline the model is part of.

With a relatively simple analysis, we’ve identified some weaknesses in both our model
and the dataset. In a real use case we would iterate on this step, cleaning up the
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dataset, retraining the model, and analyzing the new errors until we were satisfied
with the performance.

Here we analyzed the errors on a single language, but we are also interested in the
performance across languages. In the next section we’ll perform some experiments to
see how well the cross-lingual transfer in XLM-R works.

Cross-Lingual Transfer
Now that we have fine-tuned XLM-R on German, we can evaluate its ability to trans‐
fer to other languages via the predict() method of the Trainer. Since we plan to
evaluate multiple languages, let’s create a simple function that does this for us:

def get_f1_score(trainer, dataset):
    return trainer.predict(dataset).metrics["test_f1"]

We can use this function to examine the performance on the test set and keep track of
our scores in a dict:

f1_scores = defaultdict(dict)
f1_scores["de"]["de"] = get_f1_score(trainer, panx_de_encoded["test"])
print(f"F1-score of [de] model on [de] dataset: {f1_scores['de']['de']:.3f}")

F1-score of [de] model on [de] dataset: 0.868

These are pretty good results for a NER task. Our metrics are in the ballpark of 85%,
and we can see that the model seems to struggle the most on the ORG entities, proba‐
bly because these are the least common in the training data and many organization
names are rare in XLM-R’s vocabulary. How about the other languages? To warm up,
let’s see how our model fine-tuned on German fares on French:

text_fr = "Jeff Dean est informaticien chez Google en Californie"
tag_text(text_fr, tags, trainer.model, xlmr_tokenizer)

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Tokens <s> ▁Jeff ▁De an ▁est ▁informatic ien ▁chez ▁Google ▁en ▁Cali for nie </s>

Tags O B-PER I-
PER

I-
PER

O O O O B-ORG O B-LOC I-
LOC

I-
LOC

O

Not bad! Although the name and organization are the same in both languages, the
model did manage to correctly label the French translation of “Kalifornien”. Next, let’s
quantify how well our German model fares on the whole French test set by writing a
simple function that encodes a dataset and generates the classification report on it:

def evaluate_lang_performance(lang, trainer):
    panx_ds = encode_panx_dataset(panx_ch[lang])
    return get_f1_score(trainer, panx_ds["test"])
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f1_scores["de"]["fr"] = evaluate_lang_performance("fr", trainer)
print(f"F1-score of [de] model on [fr] dataset: {f1_scores['de']['fr']:.3f}")

F1-score of [de] model on [fr] dataset: 0.714

Although we see a drop of about 15 points in the micro-averaged metrics, remember
that our model has not seen a single labeled French example! In general, the size of
the performance drop is related to how “far away” the languages are from each other.
Although German and French are grouped as Indo-European languages, they techni‐
cally belong to different language families: Germanic and Romance, respectively.

Next, let’s evaluate the performance on Italian. Since Italian is also a Romance lan‐
guage, we expect to get a similar result as we found on French:

f1_scores["de"]["it"] = evaluate_lang_performance("it", trainer)
print(f"F1-score of [de] model on [it] dataset: {f1_scores['de']['it']:.3f}")

F1-score of [de] model on [it] dataset: 0.692

Indeed, our expectations are borne out by the F1-scores. Finally, let’s examine the per‐
formance on English, which belongs to the Germanic language family:

f1_scores["de"]["en"] = evaluate_lang_performance("en", trainer)
print(f"F1-score of [de] model on [en] dataset: {f1_scores['de']['en']:.3f}")

F1-score of [de] model on [en] dataset: 0.589

Surprisingly, our model fares worst on English, even though we might intuitively
expect German to be more similar to English than French. Having fine-tuned on Ger‐
man and performed zero-shot transfer to French and English, let’s next examine
when it makes sense to fine-tune directly on the target language.

When Does Zero-Shot Transfer Make Sense?
So far we’ve seen that fine-tuning XLM-R on the German corpus yields an F1-score of
around 85%, and without any additional training the model is able to achieve modest
performance on the other languages in our corpus. The question is, how good are
these results and how do they compare against an XLM-R model fine-tuned on a
monolingual corpus?

In this section we will explore this question for the French corpus by fine-tuning
XLM-R on training sets of increasing size. By tracking the performance this way, we
can determine at which point zero-shot cross-lingual transfer is superior, which in
practice can be useful for guiding decisions about whether to collect more labeled
data.

For simplicity, we’ll keep the same hyperparameters from the fine-tuning run on the
German corpus, except that we’ll tweak the logging_steps argument of Training
Arguments to account for the changing training set sizes. We can wrap this all
together in a simple function that takes a DatasetDict object corresponding to a
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monolingual corpus, downsamples it by num_samples, and fine-tunes XLM-R on that
sample to return the metrics from the best epoch:

def train_on_subset(dataset, num_samples):
    train_ds = dataset["train"].shuffle(seed=42).select(range(num_samples))
    valid_ds = dataset["validation"]
    test_ds = dataset["test"]
    training_args.logging_steps = len(train_ds) // batch_size

    trainer = Trainer(model_init=model_init, args=training_args,
        data_collator=data_collator, compute_metrics=compute_metrics,
        train_dataset=train_ds, eval_dataset=valid_ds, tokenizer=xlmr_tokenizer)
    trainer.train()
    if training_args.push_to_hub:
        trainer.push_to_hub(commit_message="Training completed!")

    f1_score = get_f1_score(trainer, test_ds)
    return pd.DataFrame.from_dict(
        {"num_samples": [len(train_ds)], "f1_score": [f1_score]})

As we did with fine-tuning on the German corpus, we also need to encode the French
corpus into input IDs, attention masks, and label IDs:

panx_fr_encoded = encode_panx_dataset(panx_ch["fr"])

Next let’s check that our function works by running it on a small training set of 250
examples:

training_args.push_to_hub = False
metrics_df = train_on_subset(panx_fr_encoded, 250)
metrics_df

num_samples f1_score

0 250 0.137329

We can see that with only 250 examples, fine-tuning on French underperforms the
zero-shot transfer from German by a large margin. Let’s now increase our training set
sizes to 500, 1,000, 2,000, and 4,000 examples to get an idea of how the performance
increases:

for num_samples in [500, 1000, 2000, 4000]:
    metrics_df = metrics_df.append(
        train_on_subset(panx_fr_encoded, num_samples), ignore_index=True)

We can compare how fine-tuning on French samples compares to zero-shot cross-
lingual transfer from German by plotting the F1-scores on the test set as a function of
increasing training set size:

fig, ax = plt.subplots()
ax.axhline(f1_scores["de"]["fr"], ls="--", color="r")
metrics_df.set_index("num_samples").plot(ax=ax)
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plt.legend(["Zero-shot from de", "Fine-tuned on fr"], loc="lower right")
plt.ylim((0, 1))
plt.xlabel("Number of Training Samples")
plt.ylabel("F1 Score")
plt.show()

From the plot we can see that zero-shot transfer remains competitive until about 750
training examples, after which fine-tuning on French reaches a similar level of perfor‐
mance to what we obtained when fine-tuning on German. Nevertheless, this result is
not to be sniffed at! In our experience, getting domain experts to label even hundreds
of documents can be costly, especially for NER, where the labeling process is fine-
grained and time-consuming.

There is one final technique we can try to evaluate multilingual learning: fine-tuning
on multiple languages at once! Let’s see how we can do this.

Fine-Tuning on Multiple Languages at Once
So far we’ve seen that zero-shot cross-lingual transfer from German to French or Ital‐
ian produces a drop of around 15 points in performance. One way to mitigate this is
by fine-tuning on multiple languages at the same time. To see what type of gains we
can get, let’s first use the concatenate_datasets() function from  Datasets to con‐
catenate the German and French corpora together:

from datasets import concatenate_datasets

def concatenate_splits(corpora):
    multi_corpus = DatasetDict()
    for split in corpora[0].keys():
        multi_corpus[split] = concatenate_datasets(
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            [corpus[split] for corpus in corpora]).shuffle(seed=42)
    return multi_corpus

panx_de_fr_encoded = concatenate_splits([panx_de_encoded, panx_fr_encoded])

For training, we’ll again use the same hyperparameters from the previous sections, so
we can simply update the logging steps, model, and datasets in the trainer:

training_args.logging_steps = len(panx_de_fr_encoded["train"]) // batch_size
training_args.push_to_hub = True
training_args.output_dir = "xlm-roberta-base-finetuned-panx-de-fr"

trainer = Trainer(model_init=model_init, args=training_args,
    data_collator=data_collator, compute_metrics=compute_metrics,
    tokenizer=xlmr_tokenizer, train_dataset=panx_de_fr_encoded["train"],
    eval_dataset=panx_de_fr_encoded["validation"])

trainer.train()
trainer.push_to_hub(commit_message="Training completed!")

Let’s have a look at how the model performs on the test set of each language:

for lang in langs:
    f1 = evaluate_lang_performance(lang, trainer)
    print(f"F1-score of [de-fr] model on [{lang}] dataset: {f1:.3f}")

F1-score of [de-fr] model on [de] dataset: 0.866
F1-score of [de-fr] model on [fr] dataset: 0.868
F1-score of [de-fr] model on [it] dataset: 0.815
F1-score of [de-fr] model on [en] dataset: 0.677

It performs much better on the French split than before, matching the performance
on the German test set. Interestingly, its performance on the Italian and English splits
also improves by roughly 10 points! So, even adding training data in another lan‐
guage improves the performance of the model on unseen languages.

Let’s round out our analysis by comparing the performance of fine-tuning on each
language separately against multilingual learning on all the corpora. Since we have
already fine-tuned on the German corpus, we can fine-tune on the remaining lan‐
guages with our train_on_subset() function, with num_samples equal to the num‐
ber of examples in the training set:

corpora = [panx_de_encoded]

# Exclude German from iteration
for lang in langs[1:]:
    training_args.output_dir = f"xlm-roberta-base-finetuned-panx-{lang}"
    # Fine-tune on monolingual corpus
    ds_encoded = encode_panx_dataset(panx_ch[lang])
    metrics = train_on_subset(ds_encoded, ds_encoded["train"].num_rows)
    # Collect F1-scores in common dict
    f1_scores[lang][lang] = metrics["f1_score"][0]
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    # Add monolingual corpus to list of corpora to concatenate
    corpora.append(ds_encoded)

Now that we’ve fine-tuned on each language’s corpus, the next step is to concatenate
all the splits together to create a multilingual corpus of all four languages. As with the
previous German and French analysis, we can use the concatenate_splits() func‐
tion to do this step for us on the list of corpora we generated in the previous step:

corpora_encoded = concatenate_splits(corpora)

Now that we have our multilingual corpus, we run the familiar steps with the trainer:

training_args.logging_steps = len(corpora_encoded["train"]) // batch_size
training_args.output_dir = "xlm-roberta-base-finetuned-panx-all"

trainer = Trainer(model_init=model_init, args=training_args,
    data_collator=data_collator, compute_metrics=compute_metrics,
    tokenizer=xlmr_tokenizer, train_dataset=corpora_encoded["train"],
    eval_dataset=corpora_encoded["validation"])

trainer.train()
trainer.push_to_hub(commit_message="Training completed!")

The final step is to generate the predictions from the trainer on each language’s test
set. This will give us an insight into how well multilingual learning is really working.
We’ll collect the F1-scores in our f1_scores dictionary and then create a DataFrame
that summarizes the main results from our multilingual experiments:

for idx, lang in enumerate(langs):
    f1_scores["all"][lang] = get_f1_score(trainer, corpora[idx]["test"])

scores_data = {"de": f1_scores["de"],
               "each": {lang: f1_scores[lang][lang] for lang in langs},
               "all": f1_scores["all"]}
f1_scores_df = pd.DataFrame(scores_data).T.round(4)
f1_scores_df.rename_axis(index="Fine-tune on", columns="Evaluated on",
                         inplace=True)
f1_scores_df

Evaluated on de fr it en

Fine-tune on

de 0.8677 0.7141 0.6923 0.5890

each 0.8677 0.8505 0.8192 0.7068

all 0.8682 0.8647 0.8575 0.7870

From these results we can draw a few general conclusions:

• Multilingual learning can provide significant gains in performance, especially if
the low-resource languages for cross-lingual transfer belong to similar language
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families. In our experiments we can see that German, French, and Italian achieve
similar performance in the all category, suggesting that these languages are
more similar to each other than to English.

• As a general strategy, it is a good idea to focus attention on cross-lingual transfer
within language families, especially when dealing with different scripts like
Japanese.

Interacting with Model Widgets
In this chapter, we’ve pushed quite a few fine-tuned models to the Hub. Although we
could use the pipeline() function to interact with them on our local machine, the
Hub provides widgets that are great for this kind of workflow. An example is shown in
Figure 4-5 for our transformersbook/xlm-roberta-base-finetuned-panx-all

checkpoint, which as you can see has done a good job at identifying all the entities of
a German text.

Figure 4-5. Example of a widget on the Hugging Face Hub

Conclusion
In this chapter we saw how to tackle an NLP task on a multilingual corpus using a
single transformer pretrained on 100 languages: XLM-R. Although we were able to
show that cross-lingual transfer from German to French is competitive when only a
small number of labeled examples are available for fine-tuning, this good perfor‐
mance generally does not occur if the target language is significantly different from
the one the base model was fine-tuned on or was not one of the 100 languages used
during pretraining. Recent proposals like MAD-X are designed precisely for these
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6 J. Pfeiffer et al., “MAD-X: An Adapter-Based Framework for Multi-Task Cross-Lingual Transfer”, (2020).

low-resource scenarios, and since MAD-X is built on top of  Transformers you can
easily adapt the code in this chapter to work with it!6

So far we have looked at two tasks: sequence classification and token classification.
These both fall into the domain of natural language understanding, where text is syn‐
thesized into predictions. In the next chapter we have our first look at text generation,
where not only the input but also the output of the model is text.
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1 This example comes from OpenAI’s blog post on GPT-2.

CHAPTER 5

Text Generation

One of the most uncanny features of transformer-based language models is their abil‐
ity to generate text that is almost indistinguishable from text written by humans. A
famous example is OpenAI’s GPT-2, which when given the prompt:1

In a shocking finding, scientist discovered a herd of unicorns living in a remote, previ‐
ously unexplored valley, in the Andes Mountains. Even more surprising to the
researchers was the fact that the unicorns spoke perfect English.

was able to generate a compelling news article about talking unicorns:

The scientist named the population, after their distinctive horn, Ovid’s Unicorn. These
four-horned, silver-white unicorns were previously unknown to science. Now, after
almost two centuries, the mystery of what sparked this odd phenomenon is finally
solved. Dr. Jorge Pérez, an evolutionary biologist from the University of La Paz, and
several companions, were exploring the Andes Mountains when they found a small
valley, with no other animals or humans. Pérez noticed that the valley had what
appeared to be a natural fountain, surrounded by two peaks of rock and silver snow.
Pérez and the others then ventured further into the valley. “By the time we reached the
top of one peak, the water looked blue, with some crystals on top,” said Pérez. Pérez
and his friends were astonished to see the unicorn herd. These creatures could be seen
from the air without having to move too much to see them—they were so close they
could touch their horns. While examining these bizarre creatures the scientists discov‐
ered that the creatures also spoke some fairly regular English …
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2 However, as Delip Rao points out, whether Meena intends to tell corny jokes is a subtle question.

What makes this example so remarkable is that it was generated without any explicit
supervision! By simply learning to predict the next word in the text of millions of web
pages, GPT-2 and its more powerful descendants like GPT-3 are able to acquire a
broad set of skills and pattern recognition abilities that can be activated with different
kinds of input prompts. Figure 5-1 shows how language models are sometimes
exposed during pretraining to sequences of tasks where they need to predict the fol‐
lowing tokens based on the context alone, like addition, unscrambling words, and
translation. This allows them to transfer this knowledge effectively during fine-tuning
or (if the model is large enough) at inference time. These tasks are not chosen ahead
of time, but occur naturally in the huge corpora used to train billion-parameter lan‐
guage models.

Figure 5-1. During pretraining, language models are exposed to sequences of tasks that
can be adapted during inference (courtesy of Tom B. Brown)

The ability of transformers to generate realistic text has led to a diverse range of
applications, like InferKit, Write With Transformer, AI Dungeon, and conversational
agents like Google’s Meena that can even tell corny jokes, as shown in Figure 5-2!2
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Figure 5-2. Meena on the left telling a corny joke to a human on the right (courtesy of
Daniel Adiwardana and Thang Luong)

In this chapter we’ll use GPT-2 to illustrate how text generation works for language
models and explore how different decoding strategies impact the generated texts.

The Challenge with Generating Coherent Text
So far in this book, we have focused on tackling NLP tasks via a combination of pre‐
training and supervised fine-tuning. As we’ve seen, for task-specific heads like
sequence or token classification, generating predictions is fairly straightforward; the
model produces some logits and we either take the maximum value to get the predic‐
ted class, or apply a softmax function to obtain the predicted probabilities per class.
By contrast, converting the model’s probabilistic output to text requires a decoding
method, which introduces a few challenges that are unique to text generation:

• The decoding is done iteratively and thus involves significantly more compute
than simply passing inputs once through the forward pass of a model.

• The quality and diversity of the generated text depend on the choice of decoding
method and associated hyperparameters.

To understand how this decoding process works, let’s start by examining how GPT-2
is pretrained and subsequently applied to generate text.
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Like other autoregressive or causal language models, GPT-2 is pretrained to estimate
the probability P � �  of a sequence of tokens � = y1, y2, ...yt occurring in the text,
given some initial prompt or context sequence � = x1, x2, ...xk. Since it is impractical
to acquire enough training data to estimate P � �  directly, it is common to use the
chain rule of probability to factorize it as a product of conditional probabilities:

P y1, ..., yt � = ∏
t = 1

N
P yt y < t, �

where y < t is a shorthand notation for the sequence y1, ..., yt − 1. It is from these con‐
ditional probabilities that we pick up the intuition that autoregressive language mod‐
eling amounts to predicting each word given the preceding words in a sentence; this
is exactly what the probability on the righthand side of the preceding equation
describes. Notice that this pretraining objective is quite different from BERT’s, which
utilizes both past and future contexts to predict a masked token.

By now you may have guessed how we can adapt this next token prediction task to
generate text sequences of arbitrary length. As shown in Figure 5-3, we start with a
prompt like “Transformers are the” and use the model to predict the next token.
Once we have determined the next token, we append it to the prompt and then use
the new input sequence to generate another token. We do this until we have reached a
special end-of-sequence token or a predefined maximum length.

Figure 5-3. Generating text from an input sequence by adding a new word to the input
at each step

Since the output sequence is conditioned on the choice of input
prompt, this type of text generation is often called conditional text
generation.
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3 If you run out of memory on your machine, you can load a smaller GPT-2 version by replacing model_name =
"gpt-xl" with model_name = "gpt".

At the heart of this process lies a decoding method that determines which token is
selected at each timestep. Since the language model head produces a logit zt, i per
token in the vocabulary at each step, we can get the probability distribution over the
next possible token wi by taking the softmax:

P yt = wi y < t, � = softmax zt, i

The goal of most decoding methods is to search for the most likely overall sequence
by picking a � such that:

� = argmax
�

P � �

Finding � directly would involve evaluating every possible sequence with the lan‐
guage model. Since there does not exist an algorithm that can do this in a reasonable
amount of time, we rely on approximations instead. In this chapter we’ll explore a few
of these approximations and gradually build up toward smarter and more complex
algorithms that can be used to generate high-quality texts.

Greedy Search Decoding
The simplest decoding method to get discrete tokens from a model’s continuous out‐
put is to greedily select the token with the highest probability at each timestep:

yt = argmax
yt

P yt y < t, �

To see how greedy search works, let’s start by loading the 1.5-billion-parameter ver‐
sion of GPT-2 with a language modeling head:3

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

device = "cuda" if torch.cuda.is_available() else "cpu"
model_name = "gpt2-xl"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name).to(device)

Now let’s generate some text! Although  Transformers provides a generate() func‐
tion for autoregressive models like GPT-2, we’ll implement this decoding method
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ourselves to see what goes on under the hood. To warm up, we’ll take the same itera‐
tive approach shown in Figure 5-3: we’ll use “Transformers are the” as the input
prompt and run the decoding for eight timesteps. At each timestep, we pick out the
model’s logits for the last token in the prompt and wrap them with a softmax to get a
probability distribution. We then pick the next token with the highest probability, add
it to the input sequence, and run the process again. The following code does the job,
and also stores the five most probable tokens at each timestep so we can visualize the
alternatives:

import pandas as pd

input_txt = "Transformers are the"
input_ids = tokenizer(input_txt, return_tensors="pt")["input_ids"].to(device)
iterations = []
n_steps = 8
choices_per_step = 5

with torch.no_grad():
    for _ in range(n_steps):
        iteration = dict()
        iteration["Input"] = tokenizer.decode(input_ids[0])
        output = model(input_ids=input_ids)
        # Select logits of the first batch and the last token and apply softmax
        next_token_logits = output.logits[0, -1, :]
        next_token_probs = torch.softmax(next_token_logits, dim=-1)
        sorted_ids = torch.argsort(next_token_probs, dim=-1, descending=True)
        # Store tokens with highest probabilities
        for choice_idx in range(choices_per_step):
            token_id = sorted_ids[choice_idx]
            token_prob = next_token_probs[token_id].cpu().numpy()
            token_choice = (
                f"{tokenizer.decode(token_id)} ({100 * token_prob:.2f}%)"
            )
            iteration[f"Choice {choice_idx+1}"] = token_choice
        # Append predicted next token to input
        input_ids = torch.cat([input_ids, sorted_ids[None, 0, None]], dim=-1)
        iterations.append(iteration)

pd.DataFrame(iterations)

Input Choice 1 Choice 2 Choice 3 Choice 4 Choice 5

0 Transformers are the most (8.53%) only (4.96%) best (4.65%) Transformers
(4.37%)

ultimate
(2.16%)

1 Transformers are the most popular
(16.78%)

powerful
(5.37%)

common (4.96%) famous (3.72%) successful
(3.20%)

2 Transformers are the most
popular

toy (10.63%) toys (7.23%) Transformers
(6.60%)

of (5.46%) and (3.76%)

3 Transformers are the most
popular toy

line (34.38%) in (18.20%) of (11.71%) brand (6.10%) line (2.69%)
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Input Choice 1 Choice 2 Choice 3 Choice 4 Choice 5

4 Transformers are the most
popular toy line

in (46.28%) of (15.09%) , (4.94%) on (4.40%) ever (2.72%)

5 Transformers are the most
popular toy line in

the (65.99%) history
(12.42%)

America (6.91%) Japan (2.44%) North (1.40%)

6 Transformers are the most
popular toy line in the

world
(69.26%)

United
(4.55%)

history (4.29%) US (4.23%) U (2.30%)

7 Transformers are the most
popular toy line in the world

, (39.73%) . (30.64%) and (9.87%) with (2.32%) today (1.74%)

With this simple method we were able to generate the sentence “Transformers are the
most popular toy line in the world”. Interestingly, this indicates that GPT-2 has inter‐
nalized some knowledge about the Transformers media franchise, which was created
by two toy companies (Hasbro and Takara Tomy). We can also see the other possible
continuations at each step, which shows the iterative nature of text generation. Unlike
other tasks such as sequence classification where a single forward pass suffices to gen‐
erate the predictions, with text generation we need to decode the output tokens one at
a time.

Implementing greedy search wasn’t too hard, but we’ll want to use the built-in
generate() function from  Transformers to explore more sophisticated decoding
methods. To reproduce our simple example, let’s make sure sampling is switched off
(it’s off by default, unless the specific configuration of the model you are loading the
checkpoint from states otherwise) and specify the max_new_tokens for the number of
newly generated tokens:

input_ids = tokenizer(input_txt, return_tensors="pt")["input_ids"].to(device)
output = model.generate(input_ids, max_new_tokens=n_steps, do_sample=False)
print(tokenizer.decode(output[0]))

Transformers are the most popular toy line in the world,

Now let’s try something a bit more interesting: can we reproduce the unicorn story
from OpenAI? As we did previously, we’ll encode the prompt with the tokenizer, and
we’ll specify a larger value for max_length to generate a longer sequence of text:

max_length = 128
input_txt = """In a shocking finding, scientist discovered \
a herd of unicorns living in a remote, previously unexplored \
valley, in the Andes Mountains. Even more surprising to the \
researchers was the fact that the unicorns spoke perfect English.\n\n
"""
input_ids = tokenizer(input_txt, return_tensors="pt")["input_ids"].to(device)
output_greedy = model.generate(input_ids, max_length=max_length,
                               do_sample=False)
print(tokenizer.decode(output_greedy[0]))
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4 N.S. Keskar et al., “CTRL: A Conditional Transformer Language Model for Controllable Generation”, (2019).

In a shocking finding, scientist discovered a herd of unicorns living in a
remote, previously unexplored valley, in the Andes Mountains. Even more
surprising to the researchers was the fact that the unicorns spoke perfect
English.

The researchers, from the University of California, Davis, and the University of
Colorado, Boulder, were conducting a study on the Andean cloud forest, which is
home to the rare species of cloud forest trees.

The researchers were surprised to find that the unicorns were able to
communicate with each other, and even with humans.

The researchers were surprised to find that the unicorns were able

Well, the first few sentences are quite different from the OpenAI example and amus‐
ingly involve different universities being credited with the discovery! We can also see
one of the main drawbacks with greedy search decoding: it tends to produce repeti‐
tive output sequences, which is certainly undesirable in a news article. This is a com‐
mon problem with greedy search algorithms, which can fail to give you the optimal
solution; in the context of decoding, they can miss word sequences whose overall
probability is higher just because high-probability words happen to be preceded by
low-probability ones.

Fortunately, we can do better—let’s examine a popular method known as beam search
decoding.

Although greedy search decoding is rarely used for text generation
tasks that require diversity, it can be useful for producing short
sequences like arithmetic where a deterministic and factually cor‐
rect output is preferred.4 For these tasks, you can condition GPT-2
by providing a few line-separated examples in the format "5 + 8
=> 13 \n 7 + 2 => 9 \n 1 + 0 =>" as the input prompt.

Beam Search Decoding
Instead of decoding the token with the highest probability at each step, beam search
keeps track of the top-b most probable next tokens, where b is referred to as the num‐
ber of beams or partial hypotheses. The next set of beams are chosen by considering
all possible next-token extensions of the existing set and selecting the b most likely
extensions. The process is repeated until we reach the maximum length or an EOS
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token, and the most likely sequence is selected by ranking the b beams according to
their log probabilities. An example of beam search is shown in Figure 5-4.

Figure 5-4. Beam search with two beams

Why do we score the sequences using log probabilities instead of the probabilities
themselves? That calculating the overall probability of a sequence P y1, y2, ..., yt �

involves calculating a product of conditional probabilities P yt y < t, �  is one reason.
Since each conditional probability is typically a small number in the range [0, 1],
taking their product can lead to an overall probability that can easily underflow. This
means that the computer can no longer precisely represent the result of the calcula‐
tion. For example, suppose we have a sequence of t = 1024 tokens and generously
assume that the probability for each token is 0.5. The overall probability for this
sequence is an extremely small number:

0.5 ** 1024

5.562684646268003e-309

which leads to numerical instability as we run into underflow. We can avoid this by
calculating a related term, the log probability. If we apply the logarithm to the joint
and conditional probabilities, then with the help of the product rule for logarithms
we get:

log P y1, ...yt � = ∑
t = 1

N
log P yt y < t, �

In other words, the product of probabilities we saw earlier becomes a sum of log
probabilities, which is much less likely to run into numerical instabilities. For exam‐
ple, calculating the log probability of the same example as before gives:
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import numpy as np

sum([np.log(0.5)] * 1024)

-709.7827128933695

This is a number we can easily deal with, and this approach still works for much
smaller numbers. Since we only want to compare relative probabilities, we can do this
directly with log probabilities.

Let’s calculate and compare the log probabilities of the texts generated by greedy and
beam search to see if beam search can improve the overall probability. Since  Trans‐
formers models return the unnormalized logits for the next token given the input
tokens, we first need to normalize the logits to create a probability distribution over
the whole vocabulary for each token in the sequence. We then need to select only the
token probabilities that were present in the sequence. The following function imple‐
ments these steps:

import torch.nn.functional as F

def log_probs_from_logits(logits, labels):
    logp = F.log_softmax(logits, dim=-1)
    logp_label = torch.gather(logp, 2, labels.unsqueeze(2)).squeeze(-1)
    return logp_label

This gives us the log probability for a single token, so to get the total log probability
of a sequence we just need to sum the log probabilities for each token:

def sequence_logprob(model, labels, input_len=0):
    with torch.no_grad():
        output = model(labels)
        log_probs = log_probs_from_logits(
            output.logits[:, :-1, :], labels[:, 1:])
        seq_log_prob = torch.sum(log_probs[:, input_len:])
    return seq_log_prob.cpu().numpy()

Note that we ignore the log probabilities of the input sequence because they are not
generated by the model. We can also see that it is important to align the logits and the
labels; since the model predicts the next token, we do not get a logit for the first label,
and we don’t need the last logit because we don’t have a ground truth token for it.

Let’s use these functions to first calculate the sequence log probability of the greedy
decoder on the OpenAI prompt:

logp = sequence_logprob(model, output_greedy, input_len=len(input_ids[0]))
print(tokenizer.decode(output_greedy[0]))
print(f"\nlog-prob: {logp:.2f}")

In a shocking finding, scientist discovered a herd of unicorns living in a
remote, previously unexplored valley, in the Andes Mountains. Even more
surprising to the researchers was the fact that the unicorns spoke perfect
English.
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The researchers, from the University of California, Davis, and the University of
Colorado, Boulder, were conducting a study on the Andean cloud forest, which is
home to the rare species of cloud forest trees.

The researchers were surprised to find that the unicorns were able to
communicate with each other, and even with humans.

The researchers were surprised to find that the unicorns were able

log-prob: -87.43

Now let’s compare this to a sequence that is generated with beam search. To activate
beam search with the generate() function we just need to specify the number of
beams with the num_beams parameter. The more beams we choose, the better the
result potentially gets; however, the generation process becomes much slower since
we generate parallel sequences for each beam:

output_beam = model.generate(input_ids, max_length=max_length, num_beams=5,
                             do_sample=False)
logp = sequence_logprob(model, output_beam, input_len=len(input_ids[0]))
print(tokenizer.decode(output_beam[0]))
print(f"\nlog-prob: {logp:.2f}")

In a shocking finding, scientist discovered a herd of unicorns living in a
remote, previously unexplored valley, in the Andes Mountains. Even more
surprising to the researchers was the fact that the unicorns spoke perfect
English.

The discovery of the unicorns was made by a team of scientists from the
University of California, Santa Cruz, and the National Geographic Society.

The scientists were conducting a study of the Andes Mountains when they
discovered a herd of unicorns living in a remote, previously unexplored valley,
in the Andes Mountains. Even more surprising to the researchers was the fact
that the unicorns spoke perfect English

log-prob: -55.23

We can see that we get a better log probability (higher is better) with beam search
than we did with simple greedy decoding. However, we can see that beam search also
suffers from repetitive text. One way to address this is to impose an n-gram penalty
with the no_repeat_ngram_size parameter that tracks which n-grams have been seen
and sets the next token probability to zero if it would produce a previously seen
n-gram:
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output_beam = model.generate(input_ids, max_length=max_length, num_beams=5,
                             do_sample=False, no_repeat_ngram_size=2)
logp = sequence_logprob(model, output_beam, input_len=len(input_ids[0]))
print(tokenizer.decode(output_beam[0]))
print(f"\nlog-prob: {logp:.2f}")

In a shocking finding, scientist discovered a herd of unicorns living in a
remote, previously unexplored valley, in the Andes Mountains. Even more
surprising to the researchers was the fact that the unicorns spoke perfect
English.

The discovery was made by a team of scientists from the University of
California, Santa Cruz, and the National Geographic Society.

According to a press release, the scientists were conducting a survey of the
area when they came across the herd. They were surprised to find that they were
able to converse with the animals in English, even though they had never seen a
unicorn in person before. The researchers were

log-prob: -93.12

This isn’t too bad! We’ve managed to stop the repetitions, and we can see that despite
producing a lower score, the text remains coherent. Beam search with n-gram penalty
is a good way to find a trade-off between focusing on high-probability tokens (with
beam search) while reducing repetitions (with n-gram penalty), and it’s commonly
used in applications such as summarization or machine translation where factual cor‐
rectness is important. When factual correctness is less important than the diversity of
generated output, for instance in open-domain chitchat or story generation, another
alternative to reduce repetitions while improving diversity is to use sampling. Let’s
round out our exploration of text generation by examining a few of the most com‐
mon sampling methods.

Sampling Methods
The simplest sampling method is to randomly sample from the probability distribu‐
tion of the model’s outputs over the full vocabulary at each timestep:

P yt = wi y < t, � = softmax zt, i =
exp zt, i

∑ j = 1
V exp zt, j

where V  denotes the cardinality of the vocabulary. We can easily control the diver‐
sity of the output by adding a temperature parameter T that rescales the logits before
taking the softmax:
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5 If you know some physics, you may recognize a striking resemblance to the Boltzmann distribution.

P yt = wi y < t, � =
exp zt, i/T

∑ j = 1
V exp zt, j/T

By tuning T we can control the shape of the probability distribution.5 When T ≪ 1,
the distribution becomes peaked around the origin and the rare tokens are sup‐
pressed. On the other hand, when T ≫ 1, the distribution flattens out and each token
becomes equally likely. The effect of temperature on token probabilities is shown in
Figure 5-5.

Figure 5-5. Distribution of randomly generated token probabilities for three selected
temperatures

To see how we can use temperature to influence the generated text, let’s sample with
T = 2 by setting the temperature parameter in the generate() function (we’ll
explain the meaning of the top_k parameter in the next section):

output_temp = model.generate(input_ids, max_length=max_length, do_sample=True,
                             temperature=2.0, top_k=0)
print(tokenizer.decode(output_temp[0]))

In a shocking finding, scientist discovered a herd of unicorns living in a
remote, previously unexplored valley, in the Andes Mountains. Even more
surprising to the researchers was the fact that the unicorns spoke perfect
English.

While the station aren protagonist receive Pengala nostalgiates tidbitRegarding
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We can clearly see that a high temperature has produced mostly gibberish; by accen‐
tuating the rare tokens, we’ve caused the model to create strange grammar and quite a
few made-up words! Let’s see what happens if we cool down the temperature:

output_temp = model.generate(input_ids, max_length=max_length, do_sample=True,
                             temperature=0.5, top_k=0)
print(tokenizer.decode(output_temp[0]))

In a shocking finding, scientist discovered a herd of unicorns living in a
remote, previously unexplored valley, in the Andes Mountains. Even more
surprising to the researchers was the fact that the unicorns spoke perfect
English.

The scientists were searching for the source of the mysterious sound, which was
making the animals laugh and cry.

The unicorns were living in a remote valley in the Andes mountains

'When we first heard the noise of the animals, we thought it was a lion or a
tiger,' said Luis Guzman, a researcher from the University of Buenos Aires,
Argentina.

'But when

This is significantly more coherent, and even includes a quote from yet another uni‐
versity being credited with the discovery! The main lesson we can draw from temper‐
ature is that it allows us to control the quality of the samples, but there’s always a
trade-off between coherence (low temperature) and diversity (high temperature) that
one has to tune to the use case at hand.

Another way to adjust the trade-off between coherence and diversity is to truncate
the distribution of the vocabulary. This allows us to adjust the diversity freely with
the temperature, but in a more limited range that excludes words that would be too
strange in the context (i.e., low-probability words). There are two main ways to do
this: top-k and nucleus (or top-p) sampling. Let’s take a look.

Top-k and Nucleus Sampling
Top-k and nucleus (top-p) sampling are two popular alternatives or extensions to
using temperature. In both cases, the basic idea is to restrict the number of possible
tokens we can sample from at each timestep. To see how this works, let’s first visualize
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the cumulative probability distribution of the model’s outputs at T = 1 as seen in
Figure 5-6.

Let’s tease apart these plots, since they contain a lot of information. In the upper plot
we can see a histogram of the token probabilities. It has a peak around 10−8 and a
second, smaller peak around 10−4, followed by a sharp drop with just a handful of
tokens occurring with probability between 10−2 and 10−1. Looking at this diagram,
we can see that the probability of picking the token with the highest probability (the
isolated bar at 10−1) is 1 in 10.

Figure 5-6. Probability distribution of next token prediction (upper) and cumulative dis‐
tribution of descending token probabilities (lower)

In the lower plot, we’ve ordered the tokens by descending probability and calculated
the cumulative sum of the first 10,000 tokens (in total, there are 50,257 tokens in
GPT-2’s vocabulary). The curved line represents the probability of picking any of the
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preceding tokens. For example, there is roughly a 96% chance of picking any of the
1,000 tokens with the highest probability. We see that the probability rises quickly
above 90% but saturates to close to 100% only after several thousand tokens. The plot
shows that there is a 1 in 100 chance of not picking any of the tokens that are not
even in the top 2,000.

Although these numbers might appear small at first sight, they become important
because we sample once per token when generating text. So even if there is only a 1 in
100 or 1,000 chance, if we sample hundreds of times there is a significant chance of
picking an unlikely token at some point—and picking such tokens when sampling
can badly influence the quality of the generated text. For this reason, we generally
want to avoid these very unlikely tokens. This is where top-k and top-p sampling
come into play.

The idea behind top-k sampling is to avoid the low-probability choices by only sam‐
pling from the k tokens with the highest probability. This puts a fixed cut on the long
tail of the distribution and ensures that we only sample from likely choices. Going
back to Figure 5-6, top-k sampling is equivalent to defining a vertical line and sam‐
pling from the tokens on the left. Again, the generate() function provides an easy
method to achieve this with the top_k argument:

output_topk = model.generate(input_ids, max_length=max_length, do_sample=True,
                             top_k=50)
print(tokenizer.decode(output_topk[0]))

In a shocking finding, scientist discovered a herd of unicorns living in a
remote, previously unexplored valley, in the Andes Mountains. Even more
surprising to the researchers was the fact that the unicorns spoke perfect
English.

The wild unicorns roam the Andes Mountains in the region of Cajamarca, on the
border with Argentina (Picture: Alamy/Ecole Nationale Supérieure d'Histoire
Naturelle)

The researchers came across about 50 of the animals in the valley. They had
lived in such a remote and isolated area at that location for nearly a thousand
years that

This is arguably the most human-looking text we’ve generated so far. But how do we
choose k? The value of k is chosen manually and is the same for each choice in the
sequence, independent of the actual output distribution. We can find a good value for
k by looking at some text quality metrics, which we will explore in the next chapter—
but that fixed cutoff might not be very satisfactory.

An alternative is to use a dynamic cutoff. With nucleus or top-p sampling, instead of
choosing a fixed cutoff value, we set a condition of when to cut off. This condition is
when a certain probability mass in the selection is reached. Let’s say we set that value
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to 95%. We then order all tokens in descending order by probability and add one
token after another from the top of the list until the sum of the probabilities of the
selected tokens is 95%. Returning to Figure 5-6, the value for p defines a horizontal
line on the cumulative sum of probabilities plot, and we sample only from tokens
below the line. Depending on the output distribution, this could be just one (very
likely) token or a hundred (more equally likely) tokens. At this point, you are proba‐
bly not surprised that the generate() function also provides an argument to activate
top-p sampling. Let’s try it out:

output_topp = model.generate(input_ids, max_length=max_length, do_sample=True,
                             top_p=0.90)
print(tokenizer.decode(output_topp[0]))

In a shocking finding, scientist discovered a herd of unicorns living in a
remote, previously unexplored valley, in the Andes Mountains. Even more
surprising to the researchers was the fact that the unicorns spoke perfect
English.

The scientists studied the DNA of the animals and came to the conclusion that
the herd are descendants of a prehistoric herd that lived in Argentina about
50,000 years ago.

According to the scientific analysis, the first humans who migrated to South
America migrated into the Andes Mountains from South Africa and Australia, after
the last ice age had ended.

Since their migration, the animals have been adapting to

Top-p sampling has also produced a coherent story, and this time with a new twist
about migrations from Australia to South America. You can even combine the two
sampling approaches to get the best of both worlds. Setting top_k=50 and top_p=0.9
corresponds to the rule of choosing tokens with a probability mass of 90%, from a
pool of at most 50 tokens.

We can also apply beam search when we use sampling. Instead of
selecting the next batch of candidate tokens greedily, we can sample
them and build up the beams in the same way.
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Which Decoding Method Is Best?
Unfortunately, there is no universally “best” decoding method. Which approach is
best will depend on the nature of the task you are generating text for. If you want
your model to perform a precise task like arithmetic or providing an answer to a spe‐
cific question, then you should lower the temperature or use deterministic methods
like greedy search in combination with beam search to guarantee getting the most
likely answer. If you want the model to generate longer texts and even be a bit crea‐
tive, then you should switch to sampling methods and increase the temperature or
use a mix of top-k and nucleus sampling.

Conclusion
In this chapter we looked at text generation, which is a very different task from the
NLU tasks we encountered previously. Generating text requires at least one forward
pass per generated token, and even more if we use beam search. This makes text gen‐
eration computationally demanding, and one needs the right infrastructure to run a
text generation model at scale. In addition, a good decoding strategy that transforms
the model’s output probabilities into discrete tokens can improve the text quality.
Finding the best decoding strategy requires some experimentation and a subjective
evaluation of the generated texts.

In practice, however, we don’t want to make these decisions based on gut feeling
alone! Like with other NLP tasks, we should choose a model performance metric that
reflects the problem we want to solve. Unsurprisingly, there are a wide range of
choices, and we will encounter the most common ones in the next chapter, where we
have a look at how to train and evaluate a model for text summarization. Or, if you
can’t wait to learn how to train a GPT-type model from scratch, you can skip right to
Chapter 10, where we collect a large dataset of code and then train an autoregressive
language model on it.
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CHAPTER 6

Summarization

At one point or another, you’ve probably needed to summarize a document, be it a
research article, a financial earnings report, or a thread of emails. If you think about
it, this requires a range of abilities, such as understanding long passages, reasoning
about the contents, and producing fluent text that incorporates the main topics from
the original document. Moreover, accurately summarizing a news article is very dif‐
ferent from summarizing a legal contract, so being able to do so requires a sophistica‐
ted degree of domain generalization. For these reasons, text summarization is a
difficult task for neural language models, including transformers. Despite these chal‐
lenges, text summarization offers the prospect for domain experts to significantly
speed up their workflows and is used by enterprises to condense internal knowledge,
summarize contracts, automatically generate content for social media releases,
and more.

To help you understand the challenges involved, this chapter will explore how we can
leverage pretrained transformers to summarize documents. Summarization is a clas‐
sic sequence-to-sequence (seq2seq) task with an input text and a target text. As we
saw in Chapter 1, this is where encoder-decoder transformers excel.

In this chapter we will build our own encoder-decoder model to condense dialogues
between several people into a crisp summary. But before we get to that, let’s begin by
taking a look at one of the canonical datasets for summarization: the CNN/DailyMail
corpus.

The CNN/DailyMail Dataset
The CNN/DailyMail dataset consists of around 300,000 pairs of news articles and
their corresponding summaries, composed from the bullet points that CNN and the
DailyMail attach to their articles. An important aspect of the dataset is that the

141



summaries are abstractive and not extractive, which means that they consist of new
sentences instead of simple excerpts. The dataset is available on the Hub; we’ll use
version 3.0.0, which is a nonanonymized version set up for summarization. We can
select versions in a similar manner as splits, we saw in Chapter 4, with a version
keyword. So let’s dive in and have a look at it:

from datasets import load_dataset

dataset = load_dataset("cnn_dailymail", version="3.0.0")
print(f"Features: {dataset['train'].column_names}")

Features: ['article', 'highlights', 'id']

The dataset has three columns: article, which contains the news articles, high
lights with the summaries, and id to uniquely identify each article. Let’s look at an
excerpt from an article:

sample = dataset["train"][1]
print(f"""
Article (excerpt of 500 characters, total length: {len(sample["article"])}):
""")
print(sample["article"][:500])
print(f'\nSummary (length: {len(sample["highlights"])}):')
print(sample["highlights"])

Article (excerpt of 500 characters, total length: 3192):

(CNN) -- Usain Bolt rounded off the world championships Sunday by claiming his
third gold in Moscow as he anchored Jamaica to victory in the men's 4x100m
relay. The fastest man in the world charged clear of United States rival Justin
Gatlin as the Jamaican quartet of Nesta Carter, Kemar Bailey-Cole, Nickel
Ashmeade and Bolt won in 37.36 seconds. The U.S finished second in 37.56 seconds
with Canada taking the bronze after Britain were disqualified for a faulty
handover. The 26-year-old Bolt has n

Summary (length: 180):
Usain Bolt wins third gold of world championship .
Anchors Jamaica to 4x100m relay victory .
Eighth gold at the championships for Bolt .
Jamaica double up in women's 4x100m relay .

We see that the articles can be very long compared to the target summary; in this par‐
ticular case the difference is 17-fold. Long articles pose a challenge to most trans‐
former models since the context size is usually limited to 1,000 tokens or so, which is
equivalent to a few paragraphs of text. The standard, yet crude way to deal with this
for summarization is to simply truncate the texts beyond the model’s context size.
Obviously there could be important information for the summary toward the end of
the text, but for now we need to live with this limitation of the model architectures.
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Text Summarization Pipelines
Let’s see how a few of the most popular transformer models for summarization per‐
form by first looking qualitatively at the outputs for the preceding example. Although
the model architectures we will be exploring have varying maximum input sizes, let’s
restrict the input text to 2,000 characters to have the same input for all models and
thus make the outputs more comparable:

sample_text = dataset["train"][1]["article"][:2000]
# We'll collect the generated summaries of each model in a dictionary
summaries = {}

A convention in summarization is to separate the summary sentences by a newline.
We could add a newline token after each full stop, but this simple heuristic would fail
for strings like “U.S.” or “U.N.” The Natural Language Toolkit (NLTK) package
includes a more sophisticated algorithm that can differentiate the end of a sentence
from punctuation that occurs in abbreviations:

import nltk
from nltk.tokenize import sent_tokenize

nltk.download("punkt")

string = "The U.S. are a country. The U.N. is an organization."
sent_tokenize(string)

['The U.S. are a country.', 'The U.N. is an organization.']

In the following sections we will load several large models. If you
run out of memory, you can either replace the large models with
smaller checkpoints (e.g., “gpt”, “t5-small”) or skip this section and
jump to “Evaluating PEGASUS on the CNN/DailyMail Dataset” on
page 154.

Summarization Baseline
A common baseline for summarizing news articles is to simply take the first three
sentences of the article. With NLTK’s sentence tokenizer, we can easily implement
such a baseline:

def three_sentence_summary(text):
    return "\n".join(sent_tokenize(text)[:3])

summaries["baseline"] = three_sentence_summary(sample_text)
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1 A. Radford et al., “Language Models Are Unsupervised Multitask Learners”, OpenAI (2019).

GPT-2
We’ve already seen in Chapter 5 how GPT-2 can generate text given some prompt.
One of the model’s surprising features is that we can also use it to generate summaries
by simply appending “TL;DR” at the end of the input text. The expression “TL;DR”
(too long; didn’t read) is often used on platforms like Reddit to indicate a short ver‐
sion of a long post. We will start our summarization experiment by re-creating the
procedure of the original paper with the pipeline() function from  Transformers.1

We create a text generation pipeline and load the large GPT-2 model:

from transformers import pipeline, set_seed

set_seed(42)
pipe = pipeline("text-generation", model="gpt2-xl")
gpt2_query = sample_text + "\nTL;DR:\n"
pipe_out = pipe(gpt2_query, max_length=512, clean_up_tokenization_spaces=True)
summaries["gpt2"] = "\n".join(
    sent_tokenize(pipe_out[0]["generated_text"][len(gpt2_query) :]))

Here we just store the summaries of the generated text by slicing off the input query
and keep the result in a Python dictionary for later comparison.

T5
Next let’s try the T5 transformer. As we saw in Chapter 3, the developers of this
model performed a comprehensive study of transfer learning in NLP and found they
could create a universal transformer architecture by formulating all tasks as text-to-
text tasks. The T5 checkpoints are trained on a mixture of unsupervised data (to
reconstruct masked words) and supervised data for several tasks, including summari‐
zation. These checkpoints can thus be directly used to perform summarization
without fine-tuning by using the same prompts used during pretraining. In this
framework, the input format for the model to summarize a document is "summarize:
<ARTICLE>", and for translation it looks like "translate English to German:

<TEXT>". As shown in Figure 6-1, this makes T5 extremely versatile and allows you to
solve many tasks with a single model.

We can directly load T5 for summarization with the pipeline() function, which also
takes care of formatting the inputs in the text-to-text format so we don’t need to pre‐
pend them with "summarize":

pipe = pipeline("summarization", model="t5-large")
pipe_out = pipe(sample_text)
summaries["t5"] = "\n".join(sent_tokenize(pipe_out[0]["summary_text"]))
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2 M. Lewis et al., “BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation,
Translation, and Comprehension”, (2019).

3 J. Zhang et al., “PEGASUS: Pre-Training with Extracted Gap-Sentences for Abstractive Summarization”,
(2019).

Figure 6-1. Diagram of T5’s text-to-text framework (courtesy of Colin Raffel); besides
translation and summarization, the CoLA (linguistic acceptability) and STSB (semantic
similarity) tasks are shown

BART
BART also uses an encoder-decoder architecture and is trained to reconstruct cor‐
rupted inputs. It combines the pretraining schemes of BERT and GPT-2.2 We’ll use
the facebook/bart-large-ccn checkpoint, which has been specifically fine-tuned on
the CNN/DailyMail dataset:

pipe = pipeline("summarization", model="facebook/bart-large-cnn")
pipe_out = pipe(sample_text)
summaries["bart"] = "\n".join(sent_tokenize(pipe_out[0]["summary_text"]))

PEGASUS
Like BART, PEGASUS is an encoder-decoder transformer.3 As shown in Figure 6-2,
its pretraining objective is to predict masked sentences in multisentence texts. The
authors argue that the closer the pretraining objective is to the downstream task, the
more effective it is. With the aim of finding a pretraining objective that is closer to
summarization than general language modeling, they automatically identified, in a
very large corpus, sentences containing most of the content of their surrounding
paragraphs (using summarization evaluation metrics as a heuristic for content
overlap) and pretrained the PEGASUS model to reconstruct these sentences, thereby
obtaining a state-of-the-art model for text summarization.
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Figure 6-2. Diagram of PEGASUS architecture (courtesy of Jingqing Zhang et al.)

This model has a special token for newlines, which is why we don’t need the
sent_tokenize() function:

pipe = pipeline("summarization", model="google/pegasus-cnn_dailymail")
pipe_out = pipe(sample_text)
summaries["pegasus"] = pipe_out[0]["summary_text"].replace(" .<n>", ".\n")

Comparing Different Summaries
Now that we have generated summaries with four different models, let’s compare the
results. Keep in mind that one model has not been trained on the dataset at all
(GPT-2), one model has been fine-tuned on this task among others (T5), and two
models have exclusively been fine-tuned on this task (BART and PEGASUS). Let’s
have a look at the summaries these models have generated:

print("GROUND TRUTH")
print(dataset["train"][1]["highlights"])
print("")

for model_name in summaries:
    print(model_name.upper())
    print(summaries[model_name])
    print("")

GROUND TRUTH
Usain Bolt wins third gold of world championship .
Anchors Jamaica to 4x100m relay victory .
Eighth gold at the championships for Bolt .
Jamaica double up in women's 4x100m relay .

BASELINE
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(CNN) -- Usain Bolt rounded off the world championships Sunday by claiming his
third gold in Moscow as he anchored Jamaica to victory in the men's 4x100m
relay.
The fastest man in the world charged clear of United States rival Justin Gatlin
as the Jamaican quartet of Nesta Carter, Kemar Bailey-Cole, Nickel Ashmeade and
Bolt won in 37.36 seconds.
The U.S finished second in 37.56 seconds with Canada taking the bronze after
Britain were disqualified for a faulty handover.

GPT2
Nesta, the fastest man in the world.
Gatlin, the most successful Olympian ever.
Kemar, a Jamaican legend.
Shelly-Ann, the fastest woman ever.
Bolt, the world's greatest athlete.
The team sport of pole vaulting

T5
usain bolt wins his third gold medal of the world championships in the men's
4x100m relay .
the 26-year-old anchored Jamaica to victory in the event in the Russian capital
.
he has now collected eight gold medals at the championships, equaling the record
.

BART
Usain Bolt wins his third gold of the world championships in Moscow.
Bolt anchors Jamaica to victory in the men's 4x100m relay.
The 26-year-old has now won eight gold medals at world championships.
Jamaica's women also win gold in the relay, beating France in the process.

PEGASUS
Usain Bolt wins third gold of world championships.
Anchors Jamaica to victory in men's 4x100m relay.
Eighth gold at the championships for Bolt.
Jamaica also win women's 4x100m relay .

The first thing we notice by looking at the model outputs is that the summary gener‐
ated by GPT-2 is quite different from the others. Instead of giving a summary of the
text, it summarizes the characters. Often the GPT-2 model “hallucinates” or invents
facts, since it was not explicitly trained to generate truthful summaries. For example,
at the time of writing, Nesta is not the fastest man in the world, but sits in ninth place.
Comparing the other three model summaries against the ground truth, we see that
there is remarkable overlap, with PEGASUS’s output bearing the most striking
resemblance.

Now that we have inspected a few models, let’s try to decide which one we would use
in a production setting. All four models seem to provide qualitatively reasonable
results, and we could generate a few more examples to help us decide. However, this
is not a systematic way of determining the best model! Ideally, we would define a
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40th Annual Meeting of the Association for Computational Linguistics (July 2002): 311–318, http://dx.doi.org/
10.3115/1073083.1073135.

metric, measure it for all models on some benchmark dataset, and choose the one
with the best performance. But how do you define a metric for text generation? The
standard metrics that we’ve seen, like accuracy, recall, and precision, are not easy to
apply to this task. For each “gold standard” summary written by a human, dozens of
other summaries with synonyms, paraphrases, or a slightly different way of formulat‐
ing the facts could be just as acceptable.

In the next section we will look at some common metrics that have been developed
for measuring the quality of generated text.

Measuring the Quality of Generated Text
Good evaluation metrics are important, since we use them to measure the perfor‐
mance of models not only when we train them but also later, in production. If we
have bad metrics we might be blind to model degradation, and if they are misaligned
with the business goals we might not create any value.

Measuring performance on a text generation task is not as easy as with standard clas‐
sification tasks such as sentiment analysis or named entity recognition. Take the
example of translation; given a sentence like “I love dogs!” in English and translating
it to Spanish there can be multiple valid possibilities, like “¡Me encantan los perros!”
or “¡Me gustan los perros!” Simply checking for an exact match to a reference transla‐
tion is not optimal; even humans would fare badly on such a metric because we all
write text slightly differently from each other (and even from ourselves, depending on
the time of the day or year!). Fortunately, there are alternatives.

Two of the most common metrics used to evaluate generated text are BLEU and
ROUGE. Let’s take a look at how they’re defined.

BLEU
The idea of BLEU is simple:4 instead of looking at how many of the tokens in the gen‐
erated texts are perfectly aligned with the reference text tokens, we look at words or
n-grams. BLEU is a precision-based metric, which means that when we compare the
two texts we count the number of words in the generation that occur in the reference
and divide it by the length of the reference.

However, there is an issue with this vanilla precision. Assume the generated text just
repeats the same word over and over again, and this word also appears in the refer‐
ence. If it is repeated as many times as the length of the reference text, then we get
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perfect precision! For this reason, the authors of the BLEU paper introduced a slight
modification: a word is only counted as many times as it occurs in the reference. To
illustrate this point, suppose we have the reference text “the cat is on the mat” and the
generated text “the the the the the the”.

From this simple example, we can calculate the precision values as follows:

pvanilla = 6
6

pmod = 2
6

and we can see that the simple correction has produced a much more reasonable
value. Now let’s extend this by not only looking at single words, but n-grams as well.
Let’s assume we have one generated sentence, snt, that we want to compare against a
reference sentence, snt′. We extract all possible n-grams of degree n and do the
accounting to get the precision pn:

pn =
∑n‐gram ∈ snt Countclip n‐gram

∑n‐gram ∈ snt′ Count n‐gram

In order to avoid rewarding repetitive generations, the count in the numerator is clip‐
ped. What this means is that the occurrence count of an n-gram is capped at how
many times it appears in the reference sentence. Also note that the definition of a sen‐
tence is not very strict in this equation, and if you had a generated text spanning mul‐
tiple sentences you would treat it as one sentence.

In general we have more than one sample in the test set we want to evaluate, so we
need to slightly extend the equation by summing over all samples in the corpus C:

pn =
∑snt ∈ C ∑n‐gram ∈ snt Countclip n‐gram
∑snt′ ∈ C ∑n‐gram ∈ snt′ Count n‐gram

We’re almost there. Since we are not looking at recall, all generated sequences that are
short but precise have a benefit compared to sentences that are longer. Therefore, the
precision score favors short generations. To compensate for that the authors of BLEU
introduced an additional term, the brevity penalty:

BR = min 1, e
1 − ℓre f /ℓgen
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By taking the minimum, we ensure that this penalty never exceeds 1 and the expo‐
nential term becomes exponentially small when the length of the generated text lgen is
smaller than the reference text lre f . At this point you might ask, why don’t we just use
something like an F1-score to account for recall as well? The answer is that often in
translation datasets there are multiple reference sentences instead of just one, so if we
also measured recall we would incentivize translations that used all the words from all
the references. Therefore, it’s preferable to look for high precision in the translation
and make sure the translation and reference have a similar length.

Finally, we can put everything together and get the equation for the BLEU score:

BLEU‐N = BR × ∏
n = 1

N
pn

1/N

The last term is the geometric mean of the modified precision up to n-gram N. In
practice, the BLEU-4 score is often reported. However, you can probably already see
that this metric has many limitations; for instance, it doesn’t take synonyms into
account, and many steps in the derivation seem like ad hoc and rather fragile heuris‐
tics. You can find a wonderful exposition of BLEU’s flaws in Rachel Tatman’s blog
post “Evaluating Text Output in NLP: BLEU at Your Own Risk”.

In general, the field of text generation is still looking for better evaluation metrics,
and finding ways to overcome the limits of metrics like BLEU is an active area of
research. Another weakness of the BLEU metric is that it expects the text to already
be tokenized. This can lead to varying results if the exact same method for text toke‐
nization is not used. The SacreBLEU metric addresses this issue by internalizing the
tokenization step; for this reason, it is the preferred metric for benchmarking.

We’ve now worked through some theory, but what we really want to do is calculate
the score for some generated text. Does that mean we need to implement all this logic
in Python? Fear not,  Datasets also provides metrics! Loading a metric works just
like loading a dataset:

from datasets import load_metric

bleu_metric = load_metric("sacrebleu")

The bleu_metric object is an instance of the Metric class, and works like an aggrega‐
tor: you can add single instances with add() or whole batches via add_batch(). Once
you have added all the samples you need to evaluate, you then call compute() and the
metric is calculated. This returns a dictionary with several values, such as the preci‐
sion for each n-gram, the length penalty, as well as the final BLEU score. Let’s look at
the example from before:
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import pandas as pd
import numpy as np

bleu_metric.add(
    prediction="the the the the the the", reference=["the cat is on the mat"])
results = bleu_metric.compute(smooth_method="floor", smooth_value=0)
results["precisions"] = [np.round(p, 2) for p in results["precisions"]]
pd.DataFrame.from_dict(results, orient="index", columns=["Value"])

Value

score 0.0

counts [2, 0, 0, 0]

totals [6, 5, 4, 3]

precisions [33.33, 0.0, 0.0, 0.0]

bp 1.0

sys_len 6

ref_len 6

The BLEU score also works if there are multiple reference transla‐
tions. This is why reference is passed as a list. To make the metric
smoother for zero counts in the n-grams, BLEU integrates methods
to modify the precision calculation. One method is to add a con‐
stant to the numerator. That way, a missing n-gram does not cause
the score to automatically go to zero. For the purpose of explaining
the values, we turn it off by setting smooth_value=0.

We can see the precision of the 1-gram is indeed 2/6, whereas the precisions for the
2/3/4-grams are all 0. (For more information about the individual metrics, like counts
and bp, see the SacreBLEU repository.) This means the geometric mean is zero, and
thus also the BLEU score. Let’s look at another example where the prediction is
almost correct:

bleu_metric.add(
    prediction="the cat is on mat", reference=["the cat is on the mat"])
results = bleu_metric.compute(smooth_method="floor", smooth_value=0)
results["precisions"] = [np.round(p, 2) for p in results["precisions"]]
pd.DataFrame.from_dict(results, orient="index", columns=["Value"])

Value

score 57.893007

counts [5, 3, 2, 1]

totals [5, 4, 3, 2]

precisions [100.0, 75.0, 66.67, 50.0]
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5 C-Y. Lin, “ROUGE: A Package for Automatic Evaluation of Summaries,” Text Summarization Branches Out
(July 2004), https://aclanthology.org/W04-1013.pdf.

Value

bp 0.818731

sys_len 5

ref_len 6

We observe that the precision scores are much better. The 1-grams in the prediction
all match, and only in the precision scores do we see that something is off. For the 4-
gram there are only two candidates, ["the", "cat", "is", "on"] and ["cat",
"is", "on", "mat"], where the last one does not match, hence the precision of 0.5.

The BLEU score is widely used for evaluating text, especially in machine translation,
since precise translations are usually favored over translations that include all possible
and appropriate words.

There are other applications, such as summarization, where the situation is different.
There, we want all the important information in the generated text, so we favor high
recall. This is where the ROUGE score is usually used.

ROUGE
The ROUGE score was specifically developed for applications like summarization
where high recall is more important than just precision.5 The approach is very similar
to the BLEU score in that we look at different n-grams and compare their occurrences
in the generated text and the reference texts. The difference is that with ROUGE we
check how many n-grams in the reference text also occur in the generated text. For
BLEU we looked at how many n-grams in the generated text appear in the reference,
so we can reuse the precision formula with the minor modification that we count the
(unclipped) occurrence of reference n-grams in the generated text in the numerator:

ROUGE‐N =
∑snt’ ∈ C ∑n‐gram ∈ snt′ Countmatch n‐gram

∑snt’ ∈ C ∑n‐gram ∈ snt′ Count n‐gram

This was the original proposal for ROUGE. Subsequently, researchers have found that
fully removing precision can have strong negative effects. Going back to the BLEU
formula without the clipped counting, we can measure precision as well, and we can
then combine both precision and recall ROUGE scores in the harmonic mean to get
an F1-score. This score is the metric that is nowadays commonly reported for
ROUGE.
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There is a separate score in ROUGE to measure the longest common substring (LCS),
called ROUGE-L. The LCS can be calculated for any pair of strings. For example, the
LCS for “abab” and “abc” would be “ab”, and its the length would be 2. If we want to
compare this value between two samples we need to somehow normalize it because
otherwise a longer text would be at an advantage. To achieve this, the inventor of
ROUGE came up with an F-score-like scheme where the LCS is normalized with the
length of the reference and generated text, then the two normalized scores are mixed
together:

RLCS = LCS X, Y
m

PLCS = LCS X, Y
n

FLCS =
1 + β2 RLCSPLCS
RLCS + βPLCS

, where β = PLCS/RLCS

That way the LCS score is properly normalized and can be compared across samples.
In the  Datasets implementation, two variations of ROUGE are calculated: one cal‐
culates the score per sentence and averages it for the summaries (ROUGE-L), and the
other calculates it directly over the whole summary (ROUGE-Lsum).

We can load the metric as follows:

rouge_metric = load_metric("rouge")

We already generated a set of summaries with GPT-2 and the other models, and now
we have a metric to compare the summaries systematically. Let’s apply the ROUGE
score to all the summaries generated by the models:

reference = dataset["train"][1]["highlights"]
records = []
rouge_names = ["rouge1", "rouge2", "rougeL", "rougeLsum"]

for model_name in summaries:
    rouge_metric.add(prediction=summaries[model_name], reference=reference)
    score = rouge_metric.compute()
    rouge_dict = dict((rn, score[rn].mid.fmeasure) for rn in rouge_names)
    records.append(rouge_dict)
pd.DataFrame.from_records(records, index=summaries.keys())

rouge1 rouge2 rougeL rougeLsum

baseline 0.303571 0.090909 0.214286 0.232143

gpt2 0.187500 0.000000 0.125000 0.187500
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rouge1 rouge2 rougeL rougeLsum

t5 0.486486 0.222222 0.378378 0.486486

bart 0.582278 0.207792 0.455696 0.506329

pegasus 0.866667 0.655172 0.800000 0.833333

The ROUGE metric in the  Datasets library also calculates confi‐
dence intervals (by default, the 5th and 95th percentiles). The aver‐
age value is stored in the attribute mid and the interval can be
retrieved with low and high.

These results are obviously not very reliable as we only looked at a single sample, but
we can compare the quality of the summary for that one example. The table confirms
our observation that of the models we considered, GPT-2 performs worst. This is not
surprising since it is the only model of the group that was not explicitly trained to
summarize. It is striking, however, that the simple first-three-sentence baseline
doesn’t fare too poorly compared to the transformer models that have on the order of
a billion parameters! PEGASUS and BART are the best models overall (higher
ROUGE scores are better), but T5 is slightly better on ROUGE-1 and the LCS scores.
These results place T5 and PEGASUS as the best models, but again these results
should be treated with caution as we only evaluated the models on a single example.
Looking at the results in the PEGASUS paper, we would expect the PEGASUS to out‐
perform T5 on the CNN/DailyMail dataset.

Let’s see if we can reproduce those results with PEGASUS.

Evaluating PEGASUS on the CNN/DailyMail Dataset
We now have all the pieces in place to evaluate the model properly: we have a dataset
with a test set from CNN/DailyMail, we have a metric with ROUGE, and we have a
summarization model. We just need to put the pieces together. Let’s first evaluate the
performance of the three-sentence baseline:

def evaluate_summaries_baseline(dataset, metric,
                                column_text="article",
                                column_summary="highlights"):
    summaries = [three_sentence_summary(text) for text in dataset[column_text]]
    metric.add_batch(predictions=summaries,
                     references=dataset[column_summary])
    score = metric.compute()
    return score

Now we’ll apply the function to a subset of the data. Since the test fraction of the
CNN/DailyMail dataset consists of roughly 10,000 samples, generating summaries for
all these articles takes a lot of time. Recall from Chapter 5 that every generated token
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requires a forward pass through the model; generating just 100 tokens for each sam‐
ple will thus require 1 million forward passes, and if we use beam search this number
is multiplied by the number of beams. For the purpose of keeping the calculations rel‐
atively fast, we’ll subsample the test set and run the evaluation on 1,000 samples
instead. This should give us a much more stable score estimation while completing in
less than one hour on a single GPU for the PEGASUS model:

test_sampled = dataset["test"].shuffle(seed=42).select(range(1000))

score = evaluate_summaries_baseline(test_sampled, rouge_metric)
rouge_dict = dict((rn, score[rn].mid.fmeasure) for rn in rouge_names)
pd.DataFrame.from_dict(rouge_dict, orient="index", columns=["baseline"]).T

rouge1 rouge2 rougeL rougeLsum

baseline 0.396061 0.173995 0.245815 0.361158

The scores are mostly worse than on the previous example, but still better than those
achieved by GPT-2! Now let’s implement the same evaluation function for evaluating
the PEGASUS model:

from tqdm import tqdm
import torch

device = "cuda" if torch.cuda.is_available() else "cpu"

def chunks(list_of_elements, batch_size):
    """Yield successive batch-sized chunks from list_of_elements."""
    for i in range(0, len(list_of_elements), batch_size):
        yield list_of_elements[i : i + batch_size]

def evaluate_summaries_pegasus(dataset, metric, model, tokenizer,
                               batch_size=16, device=device,
                               column_text="article",
                               column_summary="highlights"):
    article_batches = list(chunks(dataset[column_text], batch_size))
    target_batches = list(chunks(dataset[column_summary], batch_size))

    for article_batch, target_batch in tqdm(
        zip(article_batches, target_batches), total=len(article_batches)):

        inputs = tokenizer(article_batch, max_length=1024,  truncation=True,
                        padding="max_length", return_tensors="pt")

        summaries = model.generate(input_ids=inputs["input_ids"].to(device),
                         attention_mask=inputs["attention_mask"].to(device),
                         length_penalty=0.8, num_beams=8, max_length=128)

        decoded_summaries = [tokenizer.decode(s, skip_special_tokens=True,
                                clean_up_tokenization_spaces=True)
               for s in summaries]
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        decoded_summaries = [d.replace("<n>", " ") for d in decoded_summaries]
        metric.add_batch(predictions=decoded_summaries, references=target_batch)

    score = metric.compute()
    return score

Let’s unpack this evaluation code a bit. First we split the dataset into smaller batches
that we can process simultaneously. Then for each batch we tokenize the input arti‐
cles and feed them to the generate() function to produce the summaries using beam
search. We use the same generation parameters as proposed in the paper. The new
parameter for length penalty ensures that the model does not generate sequences that
are too long. Finally, we decode the generated texts, replace the <n> token, and add
the decoded texts with the references to the metric. At the end, we compute and
return the ROUGE scores. Let’s now load the model again with the AutoModelFor
Seq2SeqLM class, used for seq2seq generation tasks, and evaluate it:

from transformers import AutoModelForSeq2SeqLM, AutoTokenizer

model_ckpt = "google/pegasus-cnn_dailymail"
tokenizer = AutoTokenizer.from_pretrained(model_ckpt)
model = AutoModelForSeq2SeqLM.from_pretrained(model_ckpt).to(device)
score = evaluate_summaries_pegasus(test_sampled, rouge_metric,
                                   model, tokenizer, batch_size=8)
rouge_dict = dict((rn, score[rn].mid.fmeasure) for rn in rouge_names)
pd.DataFrame(rouge_dict, index=["pegasus"])

rouge1 rouge2 rougeL rougeLsum

pegasus 0.434381 0.210883 0.307195 0.373231

These numbers are very close to the published results. One thing to note here is that
the loss and per-token accuracy are decoupled to some degree from the ROUGE
scores. The loss is independent of the decoding strategy, whereas the ROUGE score is
strongly coupled.

Since ROUGE and BLEU correlate better with human judgment than loss or accu‐
racy, we should focus on them and carefully explore and choose the decoding strategy
when building text generation models. These metrics are far from perfect, however,
and one should always consider human judgments as well.

Now that we’re equipped with an evaluation function, it’s time to train our own
model for summarization.
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Training a Summarization Model
We’ve worked through a lot of details on text summarization and evaluation, so let’s
put this to use to train a custom text summarization model! For our application, we’ll
use the SAMSum dataset developed by Samsung, which consists of a collection of dia‐
logues along with brief summaries. In an enterprise setting, these dialogues might
represent the interactions between a customer and the support center, so generating
accurate summaries can help improve customer service and detect common patterns
among customer requests. Let’s load it and look at an example:

dataset_samsum = load_dataset("samsum")
split_lengths = [len(dataset_samsum[split])for split in dataset_samsum]

print(f"Split lengths: {split_lengths}")
print(f"Features: {dataset_samsum['train'].column_names}")
print("\nDialogue:")
print(dataset_samsum["test"][0]["dialogue"])
print("\nSummary:")
print(dataset_samsum["test"][0]["summary"])

Split lengths: [14732, 819, 818]
Features: ['id', 'dialogue', 'summary']

Dialogue:
Hannah: Hey, do you have Betty's number?
Amanda: Lemme check
Hannah: <file_gif>
Amanda: Sorry, can't find it.
Amanda: Ask Larry
Amanda: He called her last time we were at the park together
Hannah: I don't know him well
Hannah: <file_gif>
Amanda: Don't be shy, he's very nice
Hannah: If you say so..
Hannah: I'd rather you texted him
Amanda: Just text him 
Hannah: Urgh.. Alright
Hannah: Bye
Amanda: Bye bye

Summary:
Hannah needs Betty's number but Amanda doesn't have it. She needs to contact
Larry.

The dialogues look like what you would expect from a chat via SMS or WhatsApp,
including emojis and placeholders for GIFs. The dialogue field contains the full text
and the summary the summarized dialogue. Could a model that was fine-tuned on the
CNN/DailyMail dataset deal with that? Let’s find out!
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Evaluating PEGASUS on SAMSum
First we’ll run the same summarization pipeline with PEGASUS to see what the out‐
put looks like. We can reuse the code we used for the CNN/DailyMail summary
generation:

pipe_out = pipe(dataset_samsum["test"][0]["dialogue"])
print("Summary:")
print(pipe_out[0]["summary_text"].replace(" .<n>", ".\n"))

Summary:
Amanda: Ask Larry Amanda: He called her last time we were at the park together.
Hannah: I'd rather you texted him.
Amanda: Just text him .

We can see that the model mostly tries to summarize by extracting the key sentences
from the dialogue. This probably worked relatively well on the CNN/DailyMail data‐
set, but the summaries in SAMSum are more abstract. Let’s confirm this by running
the full ROUGE evaluation on the test set:

score = evaluate_summaries_pegasus(dataset_samsum["test"], rouge_metric, model,
                                   tokenizer, column_text="dialogue",
                                   column_summary="summary", batch_size=8)

rouge_dict = dict((rn, score[rn].mid.fmeasure) for rn in rouge_names)
pd.DataFrame(rouge_dict, index=["pegasus"])

rouge1 rouge2 rougeL rougeLsum

pegasus 0.296168 0.087803 0.229604 0.229514

Well, the results aren’t great, but this is not unexpected since we’ve moved quite a bit
away from the CNN/DailyMail data distribution. Nevertheless, setting up the evalua‐
tion pipeline before training has two advantages: we can directly measure the success
of training with the metric and we have a good baseline. Fine-tuning the model on
our dataset should result in an immediate improvement in the ROUGE metric, and if
that is not the case we’ll know something is wrong with our training loop.

Fine-Tuning PEGASUS
Before we process the data for training, let’s have a quick look at the length distribu‐
tion of the input and outputs:

d_len = [len(tokenizer.encode(s)) for s in dataset_samsum["train"]["dialogue"]]
s_len = [len(tokenizer.encode(s)) for s in dataset_samsum["train"]["summary"]]

fig, axes = plt.subplots(1, 2, figsize=(10, 3.5), sharey=True)
axes[0].hist(d_len, bins=20, color="C0", edgecolor="C0")
axes[0].set_title("Dialogue Token Length")
axes[0].set_xlabel("Length")
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axes[0].set_ylabel("Count")
axes[1].hist(s_len, bins=20, color="C0", edgecolor="C0")
axes[1].set_title("Summary Token Length")
axes[1].set_xlabel("Length")
plt.tight_layout()
plt.show()

We see that most dialogues are much shorter than the CNN/DailyMail articles, with
100–200 tokens per dialogue. Similarly, the summaries are much shorter, with around
20–40 tokens (the average length of a tweet).

Let’s keep those observations in mind as we build the data collator for the Trainer.
First we need to tokenize the dataset. For now, we’ll set the maximum lengths to 1024
and 128 for the dialogues and summaries, respectively:

def convert_examples_to_features(example_batch):
    input_encodings = tokenizer(example_batch["dialogue"], max_length=1024,
                                truncation=True)
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    with tokenizer.as_target_tokenizer():
        target_encodings = tokenizer(example_batch["summary"], max_length=128,
                                     truncation=True)

    return {"input_ids": input_encodings["input_ids"],
            "attention_mask": input_encodings["attention_mask"],
            "labels": target_encodings["input_ids"]}

dataset_samsum_pt = dataset_samsum.map(convert_examples_to_features,
                                       batched=True)
columns = ["input_ids", "labels", "attention_mask"]
dataset_samsum_pt.set_format(type="torch", columns=columns)

A new thing in the use of the tokenization step is the tokenizer.as_target_token
izer() context. Some models require special tokens in the decoder inputs, so it’s
important to differentiate between the tokenization of encoder and decoder inputs. In
the with statement (called a context manager), the tokenizer knows that it is tokeniz‐
ing for the decoder and can process sequences accordingly.

Now, we need to create the data collator. This function is called in the Trainer just
before the batch is fed through the model. In most cases we can use the default colla‐
tor, which collects all the tensors from the batch and simply stacks them. For the
summarization task we need to not only stack the inputs but also prepare the targets
on the decoder side. PEGASUS is an encoder-decoder transformer and thus has the
classic seq2seq architecture. In a seq2seq setup, a common approach is to apply
“teacher forcing” in the decoder. With this strategy, the decoder receives input tokens
(like in decoder-only models such as GPT-2) that consists of the labels shifted by one
in addition to the encoder output; so, when making the prediction for the next token
the decoder gets the ground truth shifted by one as an input, as illustrated in the fol‐
lowing table:

decoder_input label

step

1 [PAD] Transformers

2 [PAD, Transformers] are

3 [PAD, Transformers, are] awesome

4 [PAD, Transformers, are, awesome] for

5 [PAD, Transformers, are, awesome, for] text

6 [PAD, Transformers, are, awesome, for, text] summarization

We shift it by one so that the decoder only sees the previous ground truth labels and
not the current or future ones. Shifting alone suffices since the decoder has masked
self-attention that masks all inputs at present and in the future.
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So, when we prepare our batch, we set up the decoder inputs by shifting the labels to
the right by one. After that, we make sure the padding tokens in the labels are ignored
by the loss function by setting them to –100. We actually don’t have to do this man‐
ually, though, since the DataCollatorForSeq2Seq comes to the rescue and takes care
of all these steps for us:

from transformers import DataCollatorForSeq2Seq

seq2seq_data_collator = DataCollatorForSeq2Seq(tokenizer, model=model)

Then, as usual, we set up a the TrainingArguments for training:

from transformers import TrainingArguments, Trainer

training_args = TrainingArguments(
    output_dir='pegasus-samsum', num_train_epochs=1, warmup_steps=500,
    per_device_train_batch_size=1, per_device_eval_batch_size=1,
    weight_decay=0.01, logging_steps=10, push_to_hub=True,
    evaluation_strategy='steps', eval_steps=500, save_steps=1e6,
    gradient_accumulation_steps=16)

One thing that is different from the previous settings is that new argument,
gradient_accumulation_steps. Since the model is quite big, we had to set the batch
size to 1. However, a batch size that is too small can hurt convergence. To resolve that
issue, we can use a nifty technique called gradient accumulation. As the name sug‐
gests, instead of calculating the gradients of the full batch all at once, we make smaller
batches and aggregate the gradients. When we have aggregated enough gradients, we
run the optimization step. Naturally this is a bit slower than doing it in one pass, but
it saves us a lot of GPU memory.

Let’s now make sure that we are logged in to Hugging Face so we can push the model
to the Hub after training:

from huggingface_hub import notebook_login

notebook_login()

We have now everything we need to initialize the trainer with the model, tokenizer,
training arguments, and data collator, as well as the training and evaluation sets:

trainer = Trainer(model=model, args=training_args,
                  tokenizer=tokenizer, data_collator=seq2seq_data_collator,
                  train_dataset=dataset_samsum_pt["train"],
                  eval_dataset=dataset_samsum_pt["validation"])

We are ready for training. After training, we can directly run the evaluation function
on the test set to see how well the model performs:

trainer.train()
score = evaluate_summaries_pegasus(
    dataset_samsum["test"], rouge_metric, trainer.model, tokenizer,
    batch_size=2, column_text="dialogue", column_summary="summary")

Training a Summarization Model | 161



rouge_dict = dict((rn, score[rn].mid.fmeasure) for rn in rouge_names)
pd.DataFrame(rouge_dict, index=[f"pegasus"])

rouge1 rouge2 rougeL rougeLsum

pegasus 0.427614 0.200571 0.340648 0.340738

We see that the ROUGE scores improved considerably over the model without fine-
tuning, so even though the previous model was also trained for summarization, it was
not well adapted for the new domain. Let’s push our model to the Hub:

trainer.push_to_hub("Training complete!")

In the next section we’ll use the model to generate a few summaries for us.

You can also evaluate the generations as part of the training loop:
use the extension of TrainingArguments called Seq2SeqTraining
Arguments and specify predict_with_generate=True. Pass it to
the dedicated Trainer called Seq2SeqTrainer, which then uses the
generate() function instead of the model’s forward pass to create
predictions for evaluation. Give it a try!

Generating Dialogue Summaries
Looking at the losses and ROUGE scores, it seems the model is showing a significant
improvement over the original model trained on CNN/DailyMail only. Let’s see what
a summary generated on a sample from the test set looks like:

gen_kwargs = {"length_penalty": 0.8, "num_beams":8, "max_length": 128}
sample_text = dataset_samsum["test"][0]["dialogue"]
reference = dataset_samsum["test"][0]["summary"]
pipe = pipeline("summarization", model="transformersbook/pegasus-samsum")

print("Dialogue:")
print(sample_text)
print("\nReference Summary:")
print(reference)
print("\nModel Summary:")
print(pipe(sample_text, **gen_kwargs)[0]["summary_text"])

Dialogue:
Hannah: Hey, do you have Betty's number?
Amanda: Lemme check
Hannah: <file_gif>
Amanda: Sorry, can't find it.
Amanda: Ask Larry
Amanda: He called her last time we were at the park together
Hannah: I don't know him well
Hannah: <file_gif>
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Amanda: Don't be shy, he's very nice
Hannah: If you say so..
Hannah: I'd rather you texted him
Amanda: Just text him 
Hannah: Urgh.. Alright
Hannah: Bye
Amanda: Bye bye

Reference Summary:
Hannah needs Betty's number but Amanda doesn't have it. She needs to contact
Larry.

Model Summary:
Amanda can't find Betty's number. Larry called Betty last time they were at the
park together. Hannah wants Amanda to text Larry instead of calling Betty.

That looks much more like the reference summary. It seems the model has learned to
synthesize the dialogue into a summary without just extracting passages. Now, the
ultimate test: how well does the model work on a custom input?

custom_dialogue = """\
Thom: Hi guys, have you heard of transformers?
Lewis: Yes, I used them recently!
Leandro: Indeed, there is a great library by Hugging Face.
Thom: I know, I helped build it ;)
Lewis: Cool, maybe we should write a book about it. What do you think?
Leandro: Great idea, how hard can it be?!
Thom: I am in!
Lewis: Awesome, let's do it together!
"""
print(pipe(custom_dialogue, **gen_kwargs)[0]["summary_text"])

Thom, Lewis and Leandro are going to write a book about transformers. Thom
helped build a library by Hugging Face. They are going to do it together.

The generated summary of the custom dialogue makes sense. It summarizes well that
all the people in the discussion want to write the book together and does not simply
extract single sentences. For example, it synthesizes the third and fourth lines into a
logical combination.

Conclusion
Text summarization poses some unique challenges compared to other tasks that can
be framed as classification tasks, like sentiment analysis, named entity recognition, or
question answering. Conventional metrics such as accuracy do not reflect the quality
of the generated text. As we saw, the BLEU and ROUGE metrics can better evaluate
generated texts; however, human judgment remains the best measure.

A common question when working with summarization models is how we can sum‐
marize documents where the texts are longer than the model’s context length.
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6 J. Wu et al., “Recursively Summarizing Books with Human Feedback”, (2021).

Unfortunately, there is no single strategy to solve this problem, and to date this is still
an open and active research question. For example, recent work by OpenAI showed
how to scale summarization by applying it recursively to long documents and using
human feedback in the loop.6

In the next chapter we’ll look at question answering, which is the task of providing an
answer to a question based on a text passage. In contrast to summarization, with this
task there exist good strategies to deal with long or many documents, and we’ll show
you how to scale question answering to thousands of documents.
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CHAPTER 7

Question Answering

Whether you’re a researcher, analyst, or data scientist, chances are that at some point
you’ve needed to wade through oceans of documents to find the information you’re
looking for. To make matters worse, you’re constantly reminded by Google and Bing
that there exist better ways to search! For instance, if we search for “When did Marie
Curie win her first Nobel Prize?” on Google, we immediately get the correct answer
of “1903,” as illustrated in Figure 7-1.

Figure 7-1. A Google search query and corresponding answer snippet
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1 Although, in this particular case, everyone agrees that Drop C is the best guitar tuning.

In this example, Google first retrieved around 319,000 documents that were relevant
to the query, and then performed an additional processing step to extract the answer
snippet with the corresponding passage and web page. It’s not hard to see why these
answer snippets are useful. For example, if we search for a trickier question like
“Which guitar tuning is the best?” Google doesn’t provide an answer, and instead we
have to click on one of the web pages returned by the search engine to find it
ourselves.1

The general approach behind this technology is called question answering (QA).
There are many flavors of QA, but the most common is extractive QA, which involves
questions whose answer can be identified as a span of text in a document, where the
document might be a web page, legal contract, or news article. The two-stage process
of first retrieving relevant documents and then extracting answers from them is also
the basis for many modern QA systems, including semantic search engines, intelli‐
gent assistants, and automated information extractors. In this chapter, we’ll apply this
process to tackle a common problem facing ecommerce websites: helping consumers
answer specific queries to evaluate a product. We’ll see that customer reviews can be
used as a rich and challenging source of information for QA, and along the way we’ll
learn how transformers act as powerful reading comprehension models that can
extract meaning from text. Let’s begin by fleshing out the use case.

This chapter focuses on extractive QA, but other forms of QA may
be more suitable for your use case. For example, community QA
involves gathering question-answer pairs that are generated by
users on forums like Stack Overflow, and then using semantic sim‐
ilarity search to find the closest matching answer to a new ques‐
tion. There is also long-form QA, which aims to generate complex
paragraph-length answers to open-ended questions like “Why is
the sky blue?” Remarkably, it is also possible to do QA over tables,
and transformer models like TAPAS can even perform aggrega‐
tions to produce the final answer!

Building a Review-Based QA System
If you’ve ever purchased a product online, you probably relied on customer reviews
to help inform your decision. These reviews can often help answer specific questions
like “Does this guitar come with a strap?” or “Can I use this camera at night?” that
may be hard to answer from the product description alone. However, popular
products can have hundreds to thousands of reviews, so it can be a major drag to find
one that is relevant. One alternative is to post your question on the community QA
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2 J. Bjerva et al., “SubjQA: A Dataset for Subjectivity and Review Comprehension”, (2020).
3 As we’ll soon see, there are also unanswerable questions that are designed to produce more robust models.

platforms provided by websites like Amazon, but it usually takes days to get an
answer (if you get one at all). Wouldn’t it be nice if we could get an immediate answer,
like in the Google example from Figure 7-1? Let’s see if we can do this using
transformers!

The Dataset
To build our QA system we’ll use the SubjQA dataset,2 which consists of more than
10,000 customer reviews in English about products and services in six domains: Trip‐
Advisor, Restaurants, Movies, Books, Electronics, and Grocery. As illustrated in
Figure 7-2, each review is associated with a question that can be answered using one
or more sentences from the review.3

Figure 7-2. A question about a product and the corresponding review (the answer span
is underlined)

The interesting aspect of this dataset is that most of the questions and answers are
subjective; that is, they depend on the personal experience of the users. The example
in Figure 7-2 shows why this feature makes the task potentially more difficult than
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finding answers to factual questions like “What is the currency of the United King‐
dom?” First, the query is about “poor quality,” which is subjective and depends on the
user’s definition of quality. Second, important parts of the query do not appear in the
review at all, which means it cannot be answered with shortcuts like keyword search
or paraphrasing the input question. These features make SubjQA a realistic dataset to
benchmark our review-based QA models on, since user-generated content like that
shown in Figure 7-2 resembles what we might encounter in the wild.

QA systems are usually categorized by the domain of data that they
have access to when responding to a query. Closed-domain QA
deals with questions about a narrow topic (e.g., a single product
category), while open-domain QA deals with questions about
almost anything (e.g., Amazon’s whole product catalog). In general,
closed-domain QA involves searching through fewer documents
than the open-domain case.

To get started, let’s download the dataset from the Hugging Face Hub. As we did in
Chapter 4, we can use the get_dataset_config_names() function to find out which
subsets are available:

from datasets import get_dataset_config_names

domains = get_dataset_config_names("subjqa")
domains

['books', 'electronics', 'grocery', 'movies', 'restaurants', 'tripadvisor']

For our use case, we’ll focus on building a QA system for the Electronics domain. To
download the electronics subset, we just need to pass this value to the name argu‐
ment of the load_dataset() function:

from datasets import load_dataset

subjqa = load_dataset("subjqa", name="electronics")

Like other question answering datasets on the Hub, SubjQA stores the answers to
each question as a nested dictionary. For example, if we inspect one of the rows in the
answers column:

print(subjqa["train"]["answers"][1])

{'text': ['Bass is weak as expected', 'Bass is weak as expected, even with EQ
adjusted up'], 'answer_start': [1302, 1302], 'answer_subj_level': [1, 1],
'ans_subj_score': [0.5083333253860474, 0.5083333253860474], 'is_ans_subjective':
[True, True]}

we can see that the answers are stored in a text field, while the starting character
indices are provided in answer_start. To explore the dataset more easily, we’ll flatten
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4 D. Hendrycks et al., “CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review”, (2021).

these nested columns with the flatten() method and convert each split to a Pandas
DataFrame as follows:

import pandas as pd

dfs = {split: dset.to_pandas() for split, dset in subjqa.flatten().items()}

for split, df in dfs.items():
    print(f"Number of questions in {split}: {df['id'].nunique()}")

Number of questions in train: 1295
Number of questions in test: 358
Number of questions in validation: 255

Notice that the dataset is relatively small, with only 1,908 examples in total. This sim‐
ulates a real-world scenario, since getting domain experts to label extractive QA data‐
sets is labor-intensive and expensive. For example, the CUAD dataset for extractive
QA on legal contracts is estimated to have a value of $2 million to account for the
legal expertise needed to annotate its 13,000 examples!4

There are quite a few columns in the SubjQA dataset, but the most interesting ones
for building our QA system are shown in Table 7-1.

Table 7-1. Column names and their descriptions from the SubjQA dataset

Column name Description

title The Amazon Standard Identification Number (ASIN) associated with each product

question The question

answers.answer_text The span of text in the review labeled by the annotator

answers.answer_start The start character index of the answer span

context The customer review

Let’s focus on these columns and take a look at a few of the training examples. We can
use the sample() method to select a random sample:

qa_cols = ["title", "question", "answers.text",
           "answers.answer_start", "context"]
sample_df = dfs["train"][qa_cols].sample(2, random_state=7)
sample_df
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title question answers.text answers.answer_start context

B005DKZTMG Does the
keyboard
lightweight?

[this keyboard
is compact]

[215] I really like this keyboard. I give it 4 stars
because it doesn’t have a CAPS LOCK key so I
never know if my caps are on. But for the price,
it really suffices as a wireless keyboard. I have
very large hands and this keyboard is compact,
but I have no complaints.

B00AAIPT76 How is the
battery?

[] [] I bought this after the first spare gopro battery I
bought wouldn’t hold a charge. I have very
realistic expectations of this sort of product, I am
skeptical of amazing stories of charge time and
battery life but I do expect the batteries to hold
a charge for a couple of weeks at least and for
the charger to work like a charger. In this I was
not disappointed. I am a river rafter and found
that the gopro burns through power in a hurry
so this purchase solved that issue. the batteries
held a charge, on shorter trips the extra two
batteries were enough and on longer trips I
could use my friends JOOS Orange to recharge
them.I just bought a newtrent xtreme powerpak
and expect to be able to charge these with that
so I will not run out of power again.

From these examples we can make a few observations. First, the questions are not
grammatically correct, which is quite common in the FAQ sections of ecommerce
websites. Second, an empty answers.text entry denotes “unanswerable” questions
whose answer cannot be found in the review. Finally, we can use the start index and
length of the answer span to slice out the span of text in the review that corresponds
to the answer:

start_idx = sample_df["answers.answer_start"].iloc[0][0]
end_idx = start_idx + len(sample_df["answers.text"].iloc[0][0])
sample_df["context"].iloc[0][start_idx:end_idx]

'this keyboard is compact'

Next, let’s get a feel for what types of questions are in the training set by counting the
questions that begin with a few common starting words:

counts = {}
question_types = ["What", "How", "Is", "Does", "Do", "Was", "Where", "Why"]

for q in question_types:
    counts[q] = dfs["train"]["question"].str.startswith(q).value_counts()[True]

pd.Series(counts).sort_values().plot.barh()
plt.title("Frequency of Question Types")
plt.show()
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5 P. Rajpurkar et al., “SQuAD: 100,000+ Questions for Machine Comprehension of Text”, (2016).

We can see that questions beginning with “How”, “What”, and “Is” are the most com‐
mon ones, so let’s have a look at some examples:

for question_type in ["How", "What", "Is"]:
    for question in (
        dfs["train"][dfs["train"].question.str.startswith(question_type)]
        .sample(n=3, random_state=42)['question']):
        print(question)

How is the camera?
How do you like the control?
How fast is the charger?
What is direction?
What is the quality of the construction of the bag?
What is your impression of the product?
Is this how zoom works?
Is sound clear?
Is it a wireless keyboard?

The Stanford Question Answering Dataset
The (question, review, [answer sentences]) format of SubjQA is commonly used in
extractive QA datasets, and was pioneered in the Stanford Question Answering Data‐
set (SQuAD).5 This is a famous dataset that is often used to test the ability of
machines to read a passage of text and answer questions about it. The dataset was cre‐
ated by sampling several hundred English articles from Wikipedia, partitioning each
article into paragraphs, and then asking crowdworkers to generate a set of questions
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6 P. Rajpurkar, R. Jia, and P. Liang, “Know What You Don’t Know: Unanswerable Questions for SQuAD”,
(2018).

7 T. Kwiatkowski et al., “Natural Questions: A Benchmark for Question Answering Research,” Transactions of
the Association for Computational Linguistics 7 (March 2019): 452–466, http://dx.doi.org/10.1162/
tacl_a_00276.

and answers for each paragraph. In the first version of SQuAD, each answer to a
question was guaranteed to exist in the corresponding passage. But it wasn’t long
before sequence models started performing better than humans at extracting the cor‐
rect span of text with the answer. To make the task more difficult, SQuAD 2.0 was
created by augmenting SQuAD 1.1 with a set of adversarial questions that are relevant
to a given passage but cannot be answered from the text alone.6 The state of the art as
of this book’s writing is shown in Figure 7-3, with most models since 2019 surpassing
human performance.

Figure 7-3. Progress on the SQuAD 2.0 benchmark (image from Papers with Code)

However, this superhuman performance does not appear to reflect genuine reading
comprehension, since answers to the “unanswerable” questions can usually be identi‐
fied through patterns in the passages like antonyms. To address these problems Goo‐
gle released the Natural Questions (NQ) dataset,7 which involves fact-seeking
questions obtained from Google Search users. The answers in NQ are much longer
than in SQuAD and present a more challenging benchmark.

Now that we’ve explored our dataset a bit, let’s dive into understanding how trans‐
formers can extract answers from text.
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Extracting Answers from Text
The first thing we’ll need for our QA system is to find a way to identify a potential
answer as a span of text in a customer review. For example, if a we have a question
like “Is it waterproof?” and the review passage is “This watch is waterproof at 30m
depth”, then the model should output “waterproof at 30m”. To do this we’ll need to
understand how to:

• Frame the supervised learning problem.
• Tokenize and encode text for QA tasks.
• Deal with long passages that exceed a model’s maximum context size.

Let’s start by taking a look at how to frame the problem.

Span classification
The most common way to extract answers from text is by framing the problem as a
span classification task, where the start and end tokens of an answer span act as the
labels that a model needs to predict. This process is illustrated in Figure 7-4.

Figure 7-4. The span classification head for QA tasks

Since our training set is relatively small, with only 1,295 examples, a good strategy is
to start with a language model that has already been fine-tuned on a large-scale QA
dataset like SQuAD. In general, these models have strong reading comprehension
capabilities and serve as a good baseline upon which to build a more accurate system.
This is a somewhat different approach to that taken in previous chapters, where we
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typically started with a pretrained model and fine-tuned the task-specific head our‐
selves. For example, in Chapter 2, we had to fine-tune the classification head because
the number of classes was tied to the dataset at hand. For extractive QA, we can
actually start with a fine-tuned model since the structure of the labels remains the
same across datasets.

You can find a list of extractive QA models by navigating to the Hugging Face Hub
and searching for “squad” on the Models tab (Figure 7-5).

Figure 7-5. A selection of extractive QA models on the Hugging Face Hub

As you can see, at the time of writing, there are more than 350 QA models to choose
from—so which one should you pick? In general, the answer depends on various fac‐
tors like whether your corpus is mono- or multilingual and the constraints of run‐
ning the model in a production environment. Table 7-2 lists a few models that
provide a good foundation to build on.

Table 7-2. Baseline transformer models that are fine-tuned on SQuAD 2.0

Transformer Description Number of
parameters

F1-score on
SQuAD 2.0

MiniLM A distilled version of BERT-base that preserves 99% of the performance
while being twice as fast

66M 79.5

RoBERTa-base RoBERTa models have better performance than their BERT counterparts
and can be fine-tuned on most QA datasets using a single GPU

125M 83.0

ALBERT-XXL State-of-the-art performance on SQuAD 2.0, but computationally
intensive and difficult to deploy

235M 88.1

XLM-RoBERTa-
large

Multilingual model for 100 languages with strong zero-shot
performance

570M 83.8
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8 W. Wang et al., “MINILM: Deep Self-Attention Distillation for Task-Agnostic Compression of Pre-Trained
Transformers”, (2020).

9 Note that the token_type_ids are not present in all transformer models. In the case of BERT-like models
such as MiniLM, the token_type_ids are also used during pretraining to incorporate the next sentence
prediction task.

For the purposes of this chapter, we’ll use a fine-tuned MiniLM model since it is fast
to train and will allow us to quickly iterate on the techniques that we’ll be exploring.8

As usual, the first thing we need is a tokenizer to encode our texts, so let’s take a look
at how this works for QA tasks.

Tokenizing text for QA
To encode our texts, we’ll load the MiniLM model checkpoint from the Hugging Face
Hub as usual:

from transformers import AutoTokenizer

model_ckpt = "deepset/minilm-uncased-squad2"
tokenizer = AutoTokenizer.from_pretrained(model_ckpt)

To see the model in action, let’s first try to extract an answer from a short passage of
text. In extractive QA tasks, the inputs are provided as (question, context) pairs, so we
pass them both to the tokenizer as follows:

question = "How much music can this hold?"
context = """An MP3 is about 1 MB/minute, so about 6000 hours depending on \
file size."""
inputs = tokenizer(question, context, return_tensors="pt")

Here we’ve returned PyTorch Tensor objects, since we’ll need them to run the for‐
ward pass through the model. If we view the tokenized inputs as a table:

input_ids 101 2129 2172 2189 2064 2023 ... 5834 2006 5371 2946 1012 102

token_type_ids 0 0 0 0 0 0 ... 1 1 1 1 1 1

attention_mask 1 1 1 1 1 1 ... 1 1 1 1 1 1

we can see the familiar input_ids and attention_mask tensors, while the
token_type_ids tensor indicates which part of the inputs corresponds to the ques‐
tion and context (a 0 indicates a question token, a 1 indicates a context token).9

To understand how the tokenizer formats the inputs for QA tasks, let’s decode the
input_ids tensor:

print(tokenizer.decode(inputs["input_ids"][0]))
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10 See Chapter 2 for details on how these hidden states can be extracted.

[CLS] how much music can this hold? [SEP] an mp3 is about 1 mb / minute, so
about 6000 hours depending on file size. [SEP]

We see that for each QA example, the inputs take the format:

[CLS] question tokens [SEP] context tokens [SEP]

where the location of the first [SEP] token is determined by the token_type_ids.
Now that our text is tokenized, we just need to instantiate the model with a QA head
and run the inputs through the forward pass:

import torch
from transformers import AutoModelForQuestionAnswering

model = AutoModelForQuestionAnswering.from_pretrained(model_ckpt)

with torch.no_grad():
    outputs = model(**inputs)
print(outputs)

QuestionAnsweringModelOutput(loss=None, start_logits=tensor([[-0.9862, -4.7750,
         -5.4025, -5.2378, -5.2863, -5.5117, -4.9819, -6.1880,
         -0.9862,  0.2596, -0.2144, -1.7136,  3.7806,  4.8561, -1.0546, -3.9097,
         -1.7374, -4.5944, -1.4278,  3.9949,  5.0390, -0.2018, -3.0193, -4.8549,
         -2.3107, -3.5110, -3.5713, -0.9862]]), end_logits=tensor([[-0.9623,
         -5.4733, -5.0326, -5.1639, -5.4278, -5.5151, -5.1749, -4.6233,
         -0.9623, -3.7855, -0.8715, -3.7745, -3.0161, -1.1780,  0.1758, -2.7365,
          4.8934,  0.3046, -3.1761, -3.2762,  0.8937,  5.6606, -0.3623, -4.9554,
         -3.2531, -0.0914,  1.6211, -0.9623]]), hidden_states=None,
attentions=None)

Here we can see that we get a QuestionAnsweringModelOutput object as the output of
the QA head. As illustrated in Figure 7-4, the QA head corresponds to a linear layer
that takes the hidden states from the encoder and computes the logits for the start
and end spans.10 This means that we treat QA as a form of token classification, similar
to what we encountered for named entity recognition in Chapter 4. To convert the
outputs into an answer span, we first need to get the logits for the start and end
tokens:

start_logits = outputs.start_logits
end_logits = outputs.end_logits

If we compare the shapes of these logits to the input IDs:

print(f"Input IDs shape: {inputs.input_ids.size()}")
print(f"Start logits shape: {start_logits.size()}")
print(f"End logits shape: {end_logits.size()}")
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Input IDs shape: torch.Size([1, 28])
Start logits shape: torch.Size([1, 28])
End logits shape: torch.Size([1, 28])

we see that there are two logits (a start and end) associated with each input token. As
illustrated in Figure 7-6, larger, positive logits correspond to more likely candidates
for the start and end tokens. In this example we can see that the model assigns the
highest start token logits to the numbers “1” and “6000”, which makes sense since our
question is asking about a quantity. Similarly, we see that the end tokens with the
highest logits are “minute” and “hours”.

Figure 7-6. Predicted logits for the start and end tokens; the token with the highest score
is colored in orange

To get the final answer, we can compute the argmax over the start and end token log‐
its and then slice the span from the inputs. The following code performs these steps
and decodes the result so we can print the resulting text:

import torch

start_idx = torch.argmax(start_logits)
end_idx = torch.argmax(end_logits) + 1
answer_span = inputs["input_ids"][0][start_idx:end_idx]
answer = tokenizer.decode(answer_span)
print(f"Question: {question}")
print(f"Answer: {answer}")

Question: How much music can this hold?
Answer: 6000 hours
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Great, it worked! In  Transformers, all of these preprocessing and postprocessing
steps are conveniently wrapped in a dedicated pipeline. We can instantiate the pipe‐
line by passing our tokenizer and fine-tuned model as follows:

from transformers import pipeline

pipe = pipeline("question-answering", model=model, tokenizer=tokenizer)
pipe(question=question, context=context, topk=3)

[{'score': 0.26516005396842957,
  'start': 38,
  'end': 48,
  'answer': '6000 hours'},
 {'score': 0.2208300083875656,
  'start': 16,
  'end': 48,
  'answer': '1 MB/minute, so about 6000 hours'},
 {'score': 0.10253632068634033,
  'start': 16,
  'end': 27,
  'answer': '1 MB/minute'}]

In addition to the answer, the pipeline also returns the model’s probability estimate in
the score field (obtained by taking a softmax over the logits). This is handy when we
want to compare multiple answers within a single context. We’ve also shown that we
can have the model predict multiple answers by specifying the topk parameter. Some‐
times, it is possible to have questions for which no answer is possible, like the empty
answers.answer_start examples in SubjQA. In these cases the model will assign a
high start and end score to the [CLS] token, and the pipeline maps this output to an
empty string:

pipe(question="Why is there no data?", context=context,
     handle_impossible_answer=True)

{'score': 0.9068416357040405, 'start': 0, 'end': 0, 'answer': ''}

In our simple example, we obtained the start and end indices by
taking the argmax of the corresponding logits. However, this heu‐
ristic can produce out-of-scope answers by selecting tokens that
belong to the question instead of the context. In practice, the pipe‐
line computes the best combination of start and end indices subject
to various constraints such as being in-scope, requiring the start
indices to precede the end indices, and so on.
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Dealing with long passages
One subtlety faced by reading comprehension models is that the context often con‐
tains more tokens than the maximum sequence length of the model (which is usually
a few hundred tokens at most). As illustrated in Figure 7-7, a decent portion of the
SubjQA training set contains question-context pairs that won’t fit within MiniLM’s
context size of 512 tokens.

Figure 7-7. Distribution of tokens for each question-context pair in the SubjQA training
set

For other tasks, like text classification, we simply truncated long texts under the
assumption that enough information was contained in the embedding of the [CLS]
token to generate accurate predictions. For QA, however, this strategy is problematic
because the answer to a question could lie near the end of the context and thus would
be removed by truncation. As illustrated in Figure 7-8, the standard way to deal with
this is to apply a sliding window across the inputs, where each window contains a pas‐
sage of tokens that fit in the model’s context.
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Figure 7-8. How the sliding window creates multiple question-context pairs for long
documents—the first bar corresponds to the question, while the second bar is the context
captured in each window

In  Transformers, we can set return_overflowing_tokens=True in the tokenizer to
enable the sliding window. The size of the sliding window is controlled by the
max_seq_length argument, and the size of the stride is controlled by doc_stride.
Let’s grab the first example from our training set and define a small window to illus‐
trate how this works:

example = dfs["train"].iloc[0][["question", "context"]]
tokenized_example = tokenizer(example["question"], example["context"],
                              return_overflowing_tokens=True, max_length=100,
                              stride=25)

In this case we now get a list of input_ids, one for each window. Let’s check the num‐
ber of tokens we have in each window:

for idx, window in enumerate(tokenized_example["input_ids"]):
    print(f"Window #{idx} has {len(window)} tokens")

Window #0 has 100 tokens
Window #1 has 88 tokens

Finally, we can see where two windows overlap by decoding the inputs:

for window in tokenized_example["input_ids"]:
    print(f"{tokenizer.decode(window)} \n")

[CLS] how is the bass? [SEP] i have had koss headphones in the past, pro 4aa and
qz - 99. the koss portapro is portable and has great bass response. the work
great with my android phone and can be " rolled up " to be carried in my
motorcycle jacket or computer bag without getting crunched. they are very light
and don't feel heavy or bear down on your ears even after listening to music
with them on all day. the sound is [SEP]

[CLS] how is the bass? [SEP] and don't feel heavy or bear down on your ears even
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11 A vector is sparse if most of its elements are zero.

after listening to music with them on all day. the sound is night and day better
than any ear - bud could be and are almost as good as the pro 4aa. they are "
open air " headphones so you cannot match the bass to the sealed types, but it
comes close. for $ 32, you cannot go wrong. [SEP]

Now that we have some intuition about how QA models can extract answers from
text, let’s look at the other components we need to build an end-to-end QA pipeline.

Using Haystack to Build a QA Pipeline
In our simple answer extraction example, we provided both the question and the con‐
text to the model. However, in reality our system’s users will only provide a question
about a product, so we need some way of selecting relevant passages from among all
the reviews in our corpus. One way to do this would be to concatenate all the reviews
of a given product together and feed them to the model as a single, long context.
Although simple, the drawback of this approach is that the context can become
extremely long and thereby introduce an unacceptable latency for our users’ queries.
For example, let’s suppose that on average, each product has 30 reviews and each
review takes 100 milliseconds to process. If we need to process all the reviews to get
an answer, this would result in an average latency of 3 seconds per user query—much
too long for ecommerce websites!

To handle this, modern QA systems are typically based on the retriever-reader archi‐
tecture, which has two main components:

Retriever
Responsible for retrieving relevant documents for a given query. Retrievers are
usually categorized as sparse or dense. Sparse retrievers use word frequencies to
represent each document and query as a sparse vector.11 The relevance of a query
and a document is then determined by computing an inner product of the vec‐
tors. On the other hand, dense retrievers use encoders like transformers to repre‐
sent the query and document as contextualized embeddings (which are dense
vectors). These embeddings encode semantic meaning, and allow dense retriev‐
ers to improve search accuracy by understanding the content of the query.

Reader
Responsible for extracting an answer from the documents provided by the
retriever. The reader is usually a reading comprehension model, although at the
end of the chapter we’ll see examples of models that can generate free-form
answers.
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As illustrated in Figure 7-9, there can also be other components that apply post-
processing to the documents fetched by the retriever or to the answers extracted by
the reader. For example, the retrieved documents may need reranking to eliminate
noisy or irrelevant ones that can confuse the reader. Similarly, postprocessing of the
reader’s answers is often needed when the correct answer comes from various pas‐
sages in a long document.

Figure 7-9. The retriever-reader architecture for modern QA systems

To build our QA system, we’ll use the Haystack library developed by deepset, a Ger‐
man company focused on NLP. Haystack is based on the retriever-reader architec‐
ture, abstracts much of the complexity involved in building these systems, and
integrates tightly with  Transformers.

In addition to the retriever and reader, there are two more components involved
when building a QA pipeline with Haystack:

Document store
A document-oriented database that stores documents and metadata which are
provided to the retriever at query time

Pipeline
Combines all the components of a QA system to enable custom query flows,
merging documents from multiple retrievers, and more

In this section we’ll look at how we can use these components to quickly build a pro‐
totype QA pipeline. Later, we’ll examine how we can improve its performance.
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12 The guide also provides installation instructions for macOS and Windows.

This chapter was written using version 0.9.0 of the Haystack
library. In version 0.10.0, the pipeline and evaluation APIs were
redesigned to make it easier to inspect whether the retriever or
reader are impacting performance. To see what this chapter’s code
looks like with the new API, check out the GitHub repository.

Initializing a document store
In Haystack, there are various document stores to choose from and each one can be
paired with a dedicated set of retrievers. This is illustrated in Table 7-3, where the
compatibility of sparse (TF-IDF, BM25) and dense (Embedding, DPR) retrievers is
shown for each of the available document stores. We’ll explain what all these acro‐
nyms mean later in this chapter.

Table 7-3. Compatibility of Haystack retrievers and document stores

In memory Elasticsearch FAISS Milvus
TF-IDF Yes Yes No No

BM25 No Yes No No

Embedding Yes Yes Yes Yes

DPR Yes Yes Yes Yes

Since we’ll be exploring both sparse and dense retrievers in this chapter, we’ll use the
ElasticsearchDocumentStore, which is compatible with both retriever types. Elastic‐
search is a search engine that is capable of handling a diverse range of data types,
including textual, numerical, geospatial, structured, and unstructured. Its ability to
store huge volumes of data and quickly filter it with full-text search features makes it
especially well suited for developing QA systems. It also has the advantage of being
the industry standard for infrastructure analytics, so there’s a good chance your com‐
pany already has a cluster that you can work with.

To initialize the document store, we first need to download and install Elasticsearch.
By following Elasticsearch’s guide,12 we can grab the latest release for Linux with wget
and unpack it with the tar shell command:

url = """https://artifacts.elastic.co/downloads/elasticsearch/\
elasticsearch-7.9.2-linux-x86_64.tar.gz"""
!wget -nc -q {url}
!tar -xzf elasticsearch-7.9.2-linux-x86_64.tar.gz

Next we need to start the Elasticsearch server. Since we’re running all the code in this
book within Jupyter notebooks, we’ll need to use Python’s Popen() function to spawn
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a new process. While we’re at it, let’s also run the subprocess in the background using
the chown shell command:

import os
from subprocess import Popen, PIPE, STDOUT

# Run Elasticsearch as a background process
!chown -R daemon:daemon elasticsearch-7.9.2
es_server = Popen(args=['elasticsearch-7.9.2/bin/elasticsearch'],
                  stdout=PIPE, stderr=STDOUT, preexec_fn=lambda: os.setuid(1))
# Wait until Elasticsearch has started
!sleep 30

In the Popen() function, the args specify the program we wish to execute, while
stdout=PIPE creates a new pipe for the standard output and stderr=STDOUT collects
the errors in the same pipe. The preexec_fn argument specifies the ID of the subpro‐
cess we wish to use. By default, Elasticsearch runs locally on port 9200, so we can test
the connection by sending an HTTP request to localhost:

!curl -X GET "localhost:9200/?pretty"

{
  "name" : "96938eee37cd",
  "cluster_name" : "docker-cluster",
  "cluster_uuid" : "ABGDdvbbRWmMb9Umz79HbA",
  "version" : {
    "number" : "7.9.2",
    "build_flavor" : "default",
    "build_type" : "docker",
    "build_hash" : "d34da0ea4a966c4e49417f2da2f244e3e97b4e6e",
    "build_date" : "2020-09-23T00:45:33.626720Z",
    "build_snapshot" : false,
    "lucene_version" : "8.6.2",
    "minimum_wire_compatibility_version" : "6.8.0",
    "minimum_index_compatibility_version" : "6.0.0-beta1"
  },
  "tagline" : "You Know, for Search"
}

Now that our Elasticsearch server is up and running, the next thing to do is instanti‐
ate the document store:

from haystack.document_store.elasticsearch import ElasticsearchDocumentStore

# Return the document embedding for later use with dense retriever
document_store = ElasticsearchDocumentStore(return_embedding=True)

By default, ElasticsearchDocumentStore creates two indices on Elasticsearch: one
called document for (you guessed it) storing documents, and another called label for
storing the annotated answer spans. For now, we’ll just populate the document index
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13 For an in-depth explanation of document scoring with TF-IDF and BM25 see Chapter 23 of Speech and Lan‐
guage Processing, 3rd edition, by D. Jurafsky and J.H. Martin (Prentice Hall).

with the SubjQA reviews, and Haystack’s document stores expect a list of dictionaries
with text and meta keys as follows:

{
    "text": "<the-context>",
    "meta": {
        "field_01": "<additional-metadata>",
        "field_02": "<additional-metadata>",
        ...
    }
}

The fields in meta can be used for applying filters during retrieval. For our purposes
we’ll include the item_id and q_review_id columns of SubjQA so we can filter by
product and question ID, along with the corresponding training split. We can then
loop through the examples in each DataFrame and add them to the index with the
write_documents() method as follows:

for split, df in dfs.items():
    # Exclude duplicate reviews
    docs = [{"text": row["context"],
             "meta":{"item_id": row["title"], "question_id": row["id"],
                     "split": split}}
        for _,row in df.drop_duplicates(subset="context").iterrows()]
    document_store.write_documents(docs, index="document")

print(f"Loaded {document_store.get_document_count()} documents")

Loaded 1615 documents

Great, we’ve loaded all our reviews into an index! To search the index we’ll need a
retriever, so let’s look at how we can initialize one for Elasticsearch.

Initializing a retriever
The Elasticsearch document store can be paired with any of the Haystack retrievers,
so let’s start by using a sparse retriever based on BM25 (short for “Best Match 25”).
BM25 is an improved version of the classic Term Frequency-Inverse Document Fre‐
quency (TF-IDF) algorithm and represents the question and context as sparse vectors
that can be searched efficiently on Elasticsearch. The BM25 score measures how
much matched text is about a search query and improves on TF-IDF by saturating TF
values quickly and normalizing the document length so that short documents are
favored over long ones.13
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In Haystack, the BM25 retriever is used by default in ElasticsearchRetriever, so
let’s initialize this class by specifying the document store we wish to search over:

from haystack.retriever.sparse import ElasticsearchRetriever

es_retriever = ElasticsearchRetriever(document_store=document_store)

Next, let’s look at a simple query for a single electronics product in the training set.
For review-based QA systems like ours, it’s important to restrict the queries to a single
item because otherwise the retriever would source reviews about products that are
not related to a user’s query. For example, asking “Is the camera quality any good?”
without a product filter could return reviews about phones, when the user might be
asking about a specific laptop camera instead. By themselves, the ASIN values in our
dataset are a bit cryptic, but we can decipher them with online tools like amazon
ASIN or by simply appending the value of item_id to the www.amazon.com/dp/ URL.
The following item ID corresponds to one of Amazon’s Fire tablets, so let’s use the
retriever’s retrieve() method to ask if it’s any good for reading with:

item_id = "B0074BW614"
query = "Is it good for reading?"
retrieved_docs = es_retriever.retrieve(
    query=query, top_k=3, filters={"item_id":[item_id], "split":["train"]})

Here we’ve specified how many documents to return with the top_k argument and
applied a filter on both the item_id and split keys that were included in the meta
field of our documents. Each element of retrieved_docs is a Haystack Document
object that is used to represent documents and includes the retriever’s query score
along with other metadata. Let’s have a look at one of the retrieved documents:

print(retrieved_docs[0])

{'text': 'This is a gift to myself.  I have been a kindle user for 4 years and
this is my third one.  I never thought I would want a fire for I mainly use it
for book reading.  I decided to try the fire for when I travel I take my laptop,
my phone and my iPod classic.  I love my iPod but watching movies on the plane
with it can be challenging because it is so small. Laptops battery life is not
as good as the Kindle.  So the Fire combines for me what I needed all three to
do. So far so good.', 'score': 6.243799, 'probability': 0.6857824513476455,
'question': None, 'meta': {'item_id': 'B0074BW614', 'question_id':
'868e311275e26dbafe5af70774a300f3', 'split': 'train'}, 'embedding': None, 'id':
'252e83e25d52df7311d597dc89eef9f6'}

In addition to the document’s text, we can see the score that Elasticsearch computed
for its relevance to the query (larger scores imply a better match). Under the hood,
Elasticsearch relies on Lucene for indexing and search, so by default it uses Lucene’s
practical scoring function. You can find the nitty-gritty details behind the scoring
function in the Elasticsearch documentation, but in brief terms it first filters the can‐
didate documents by applying a Boolean test (does the document match the query?),
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and then applies a similarity metric that’s based on representing both the document
and the query as vectors.

Now that we have a way to retrieve relevant documents, the next thing we need is a
way to extract answers from them. This is where the reader comes in, so let’s take a
look at how we can load our MiniLM model in Haystack.

Initializing a reader
In Haystack, there are two types of readers one can use to extract answers from a
given context:

FARMReader

Based on deepset’s FARM framework for fine-tuning and deploying transform‐
ers. Compatible with models trained using  Transformers and can load models
directly from the Hugging Face Hub.

TransformersReader

Based on the QA pipeline from  Transformers. Suitable for running inference
only.

Although both readers handle a model’s weights in the same way, there are some dif‐
ferences in the way the predictions are converted to produce answers:

• In  Transformers, the QA pipeline normalizes the start and end logits with a
softmax in each passage. This means that it is only meaningful to compare
answer scores between answers extracted from the same passage, where the prob‐
abilities sum to 1. For example, an answer score of 0.9 from one passage is not
necessarily better than a score of 0.8 in another. In FARM, the logits are not nor‐
malized, so inter-passage answers can be compared more easily.

• The TransformersReader sometimes predicts the same answer twice, but with
different scores. This can happen in long contexts if the answer lies across two
overlapping windows. In FARM, these duplicates are removed.

Since we will be fine-tuning the reader later in the chapter, we’ll use the FARMReader.
As with  Transformers, to load the model we just need to specify the MiniLM
checkpoint on the Hugging Face Hub along with some QA-specific arguments:

from haystack.reader.farm import FARMReader

model_ckpt = "deepset/minilm-uncased-squad2"
max_seq_length, doc_stride = 384, 128
reader = FARMReader(model_name_or_path=model_ckpt, progress_bar=False,
                    max_seq_len=max_seq_length, doc_stride=doc_stride,
                    return_no_answer=True)
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It is also possible to fine-tune a reading comprehension model
directly in  Transformers and then load it in Transformers
Reader to run inference. For details on how to do the fine-tuning
step, see the question answering tutorial in the library’s
documentation.

In FARMReader, the behavior of the sliding window is controlled by the same
max_seq_length and doc_stride arguments that we saw for the tokenizer. Here we’ve
used the values from the MiniLM paper. To confirm, let’s now test the reader on our
simple example from earlier:

print(reader.predict_on_texts(question=question, texts=[context], top_k=1))

{'query': 'How much music can this hold?', 'no_ans_gap': 12.648084878921509,
'answers': [{'answer': '6000 hours', 'score': 10.69961929321289, 'probability':
0.3988136053085327, 'context': 'An MP3 is about 1 MB/minute, so about 6000 hours
depending on file size.', 'offset_start': 38, 'offset_end': 48,
'offset_start_in_doc': 38, 'offset_end_in_doc': 48, 'document_id':
'e344757014e804eff50faa3ecf1c9c75'}]}

Great, the reader appears to be working as expected—so next, let’s tie together all our
components using one of Haystack’s pipelines.

Putting it all together

Haystack provides a Pipeline abstraction that allows us to combine retrievers, read‐
ers, and other components together as a graph that can be easily customized for each
use case. There are also predefined pipelines analogous to those in  Transformers,
but specialized for QA systems. In our case, we’re interested in extracting answers, so
we’ll use the ExtractiveQAPipeline, which takes a single retriever-reader pair as its
arguments:

from haystack.pipeline import ExtractiveQAPipeline

pipe = ExtractiveQAPipeline(reader, es_retriever)

Each Pipeline has a run() method that specifies how the query flow should be exe‐
cuted. For the ExtractiveQAPipeline we just need to pass the query, the number of
documents to retrieve with top_k_retriever, and the number of answers to extract
from these documents with top_k_reader. In our case, we also need to specify a filter
over the item ID, which can be done using the filters argument as we did with the
retriever earlier. Let’s run a simple example using our question about the Amazon
Fire tablet again, but this time returning the extracted answers:

n_answers = 3
preds = pipe.run(query=query, top_k_retriever=3, top_k_reader=n_answers,
                 filters={"item_id": [item_id], "split":["train"]})

print(f"Question: {preds['query']} \n")
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for idx in range(n_answers):
    print(f"Answer {idx+1}: {preds['answers'][idx]['answer']}")
    print(f"Review snippet: ...{preds['answers'][idx]['context']}...")
    print("\n\n")

Question: Is it good for reading?

Answer 1: I mainly use it for book reading
Review snippet: ... is my third one.  I never thought I would want a fire for I
mainly use it for book reading.  I decided to try the fire for when I travel I
take my la...

Answer 2: the larger screen compared to the Kindle makes for easier reading
Review snippet: ...ght enough that I can hold it to read, but the larger screen
compared to the Kindle makes for easier reading. I love the color, something I
never thou...

Answer 3: it is great for reading books when no light is available
Review snippet: ...ecoming addicted to hers! Our son LOVES it and it is great
for reading books when no light is available. Amazing sound but I suggest good
headphones t...

Great, we now have an end-to-end QA system for Amazon product reviews! This is a
good start, but notice that the second and third answers are closer to what the ques‐
tion is actually asking. To do better, we’ll need some metrics to quantify the perfor‐
mance of the retriever and reader. We’ll take a look at that next.

Improving Our QA Pipeline
Although much of the recent research on QA has focused on improving reading com‐
prehension models, in practice it doesn’t matter how good your reader is if the
retriever can’t find the relevant documents in the first place! In particular, the
retriever sets an upper bound on the performance of the whole QA system, so it’s
important to make sure it’s doing a good job. With this in mind, let’s start by intro‐
ducing some common metrics to evaluate the retriever so that we can compare the
performance of sparse and dense representations.

Evaluating the Retriever
A common metric for evaluating retrievers is recall, which measures the fraction of all
relevant documents that are retrieved. In this context, “relevant” simply means
whether the answer is present in a passage of text or not, so given a set of questions,
we can compute recall by counting the number of times an answer appears in the top
k documents returned by the retriever.
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In Haystack, there are two ways to evaluate retrievers:

• Use the retriever’s in-built eval() method. This can be used for both open- and
closed-domain QA, but not for datasets like SubjQA where each document is
paired with a single product and we need to filter by product ID for every query.

• Build a custom Pipeline that combines a retriever with the EvalRetriever class.
This enables the implementation of custom metrics and query flows.

A complementary metric to recall is mean average precision (mAP),
which rewards retrievers that can place the correct answers higher
up in the document ranking.

Since we need to evaluate the recall per product and then aggregate across all prod‐
ucts, we’ll opt for the second approach. Each node in the Pipeline graph represents a
class that takes some inputs and produces some outputs via a run() method:

class PipelineNode:
    def __init__(self):
        self.outgoing_edges = 1

    def run(self, **kwargs):
        ...
        return (outputs, "outgoing_edge_name")

Here kwargs corresponds to the outputs from the previous node in the graph, which
is manipulated within the run() method to return a tuple of the outputs for the next
node, along with a name for the outgoing edge. The only other requirement is to
include an outgoing_edges attribute that indicates the number of outputs from the
node (in most cases outgoing_edges=1, unless you have branches in the pipeline that
route the inputs according to some criterion).

In our case, we need a node to evaluate the retriever, so we’ll use the EvalRetriever
class whose run() method keeps track of which documents have answers that match
the ground truth. With this class we can then build up a Pipeline graph by adding
the evaluation node after a node that represents the retriever itself:

from haystack.pipeline import Pipeline
from haystack.eval import EvalDocuments

class EvalRetrieverPipeline:
    def __init__(self, retriever):
        self.retriever = retriever
        self.eval_retriever = EvalDocuments()
        pipe = Pipeline()
        pipe.add_node(component=self.retriever, name="ESRetriever",

190 | Chapter 7: Question Answering



                      inputs=["Query"])
        pipe.add_node(component=self.eval_retriever, name="EvalRetriever",
                      inputs=["ESRetriever"])
        self.pipeline = pipe

pipe = EvalRetrieverPipeline(es_retriever)

Notice that each node is given a name and a list of inputs. In most cases, each node
has a single outgoing edge, so we just need to include the name of the previous node
in inputs.

Now that we have our evaluation pipeline, we need to pass some queries and their
corresponding answers. To do this, we’ll add the answers to a dedicated label index
on our document store. Haystack provides a Label object that represents the answer
spans and their metadata in a standardized fashion. To populate the label index,
we’ll first create a list of Label objects by looping over each question in the test set
and extracting the matching answers and additional metadata:

from haystack import Label

labels = []
for i, row in dfs["test"].iterrows():
    # Metadata used for filtering in the Retriever
    meta = {"item_id": row["title"], "question_id": row["id"]}
    # Populate labels for questions with answers
    if len(row["answers.text"]):
        for answer in row["answers.text"]:
            label = Label(
                question=row["question"], answer=answer, id=i, origin=row["id"],
                meta=meta, is_correct_answer=True, is_correct_document=True,
                no_answer=False)
            labels.append(label)
    # Populate labels for questions without answers
    else:
        label = Label(
            question=row["question"], answer="", id=i, origin=row["id"],
            meta=meta, is_correct_answer=True, is_correct_document=True,
            no_answer=True)
        labels.append(label)

If we peek at one of these labels:

print(labels[0])

{'id': 'e28f5e62-85e8-41b2-8a34-fbff63b7a466', 'created_at': None, 'updated_at':
None, 'question': 'What is the tonal balance of these headphones?', 'answer': 'I
have been a headphone fanatic for thirty years', 'is_correct_answer': True,
'is_correct_document': True, 'origin': 'd0781d13200014aa25860e44da9d5ea7',
'document_id': None, 'offset_start_in_doc': None, 'no_answer': False,
'model_id': None, 'meta': {'item_id': 'B00001WRSJ', 'question_id':
'd0781d13200014aa25860e44da9d5ea7'}}
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we can see the question-answer pair, along with an origin field that contains the
unique question ID so we can filter the document store per question. We’ve also
added the product ID to the meta field so we can filter the labels by product. Now that
we have our labels, we can write them to the label index on Elasticsearch as follows:

document_store.write_labels(labels, index="label")
print(f"""Loaded {document_store.get_label_count(index="label")} \
question-answer pairs""")

Loaded 358 question-answer pairs

Next, we need to build up a mapping between our question IDs and corresponding
answers that we can pass to the pipeline. To get all the labels, we can use the
get_all_labels_aggregated() method from the document store that will aggregate
all question-answer pairs associated with a unique ID. This method returns a list of
MultiLabel objects, but in our case we only get one element since we’re filtering by
question ID. We can build up a list of aggregated labels as follows:

labels_agg = document_store.get_all_labels_aggregated(
    index="label",
    open_domain=True,
    aggregate_by_meta=["item_id"]
)
print(len(labels_agg))

330

By peeking at one of these labels we can see that all the answers associated with a
given question are aggregated together in a multiple_answers field:

print(labels_agg[109])

{'question': 'How does the fan work?', 'multiple_answers': ['the fan is really
really good', "the fan itself isn't super loud. There is an adjustable dial to
change fan speed"], 'is_correct_answer': True, 'is_correct_document': True,
'origin': '5a9b7616541f700f103d21f8ad41bc4b', 'multiple_document_ids': [None,
None], 'multiple_offset_start_in_docs': [None, None], 'no_answer': False,
'model_id': None, 'meta': {'item_id': 'B002MU1ZRS'}}

We now have all the ingredients for evaluating the retriever, so let’s define a function
that feeds each question-answer pair associated with each product to the evaluation
pipeline and tracks the correct retrievals in our pipe object:

def run_pipeline(pipeline, top_k_retriever=10, top_k_reader=4):
    for l in labels_agg:
        _ = pipeline.pipeline.run(
            query=l.question,
            top_k_retriever=top_k_retriever,
            top_k_reader=top_k_reader,
            top_k_eval_documents=top_k_retriever,
            labels=l,
            filters={"item_id": [l.meta["item_id"]], "split": ["test"]})
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run_pipeline(pipe, top_k_retriever=3)
print(f"Recall@3: {pipe.eval_retriever.recall:.2f}")

Recall@3: 0.95

Great, it works! Notice that we picked a specific value for top_k_retriever to specify
the number of documents to retrieve. In general, increasing this parameter will
improve the recall, but at the expense of providing more documents to the reader and
slowing down the end-to-end pipeline. To guide our decision on which value to pick,
we’ll create a function that loops over several k values and compute the recall across
the whole test set for each k:

def evaluate_retriever(retriever, topk_values = [1,3,5,10,20]):
    topk_results = {}

    for topk in topk_values:
        # Create Pipeline
        p = EvalRetrieverPipeline(retriever)
        # Loop over each question-answers pair in test set
        run_pipeline(p, top_k_retriever=topk)
        # Get metrics
        topk_results[topk] = {"recall": p.eval_retriever.recall}

    return pd.DataFrame.from_dict(topk_results, orient="index")

es_topk_df = evaluate_retriever(es_retriever)

If we plot the results, we can see how the recall improves as we increase k:

def plot_retriever_eval(dfs, retriever_names):
    fig, ax = plt.subplots()
    for df, retriever_name in zip(dfs, retriever_names):
        df.plot(y="recall", ax=ax, label=retriever_name)
    plt.xticks(df.index)
    plt.ylabel("Top-k Recall")
    plt.xlabel("k")
    plt.show()

plot_retriever_eval([es_topk_df], ["BM25"])
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From the plot, we can see that there’s an inflection point around k = 5 and we get
almost perfect recall from k = 10 onwards. Let’s now take a look at retrieving docu‐
ments with dense vector techniques.

Dense Passage Retrieval
We’ve seen that we get almost perfect recall when our sparse retriever returns k = 10
documents, but can we do better at smaller values of k? The advantage of doing so is
that we can pass fewer documents to the reader and thereby reduce the overall
latency of our QA pipeline. A well-known limitation of sparse retrievers like BM25 is
that they can fail to capture the relevant documents if the user query contains terms
that don’t match exactly those of the review. One promising alternative is to use dense
embeddings to represent the question and document, and the current state of the art
is an architecture known as Dense Passage Retrieval (DPR).14 The main idea behind
DPR is to use two BERT models as encoders for the question and the passage. As
illustrated in Figure 7-10, these encoders map the input text into a d-dimensional
vector representation of the [CLS] token.
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Figure 7-10. DPR’s bi-encoder architecture for computing the relevance of a document
and query

In Haystack, we can initialize a retriever for DPR in a similar way to what we did for
BM25. In addition to specifying the document store, we also need to pick the BERT
encoders for the question and passage. These encoders are trained by giving them
questions with relevant (positive) passages and irrelevant (negative) passages, where
the goal is to learn that relevant question-passage pairs have a higher similarity. For
our use case, we’ll use encoders that have been fine-tuned on the NQ corpus in this
way:

from haystack.retriever.dense import DensePassageRetriever

dpr_retriever = DensePassageRetriever(document_store=document_store,
    query_embedding_model="facebook/dpr-question_encoder-single-nq-base",
    passage_embedding_model="facebook/dpr-ctx_encoder-single-nq-base",
    embed_title=False)

Here we’ve also set embed_title=False since concatenating the document’s title (i.e.,
item_id) doesn’t provide any additional information because we filter per product.
Once we’ve initialized the dense retriever, the next step is to iterate over all the
indexed documents in our Elasticsearch index and apply the encoders to update the
embedding representation. This can be done as follows:

document_store.update_embeddings(retriever=dpr_retriever)
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We’re now set to go! We can evaluate the dense retriever in the same way we did for
BM25 and compare the top-k recall:

dpr_topk_df = evaluate_retriever(dpr_retriever)
plot_retriever_eval([es_topk_df, dpr_topk_df], ["BM25", "DPR"])

Here we can see that DPR does not provide a boost in recall over BM25 and saturates
around k = 3.

Performing similarity search of the embeddings can be sped up by
using Facebook’s FAISS library as the document store. Similarly, the
performance of the DPR retriever can be improved by fine-tuning
on the target domain. If you’d like to learn how to fine-tune DPR,
check out the Haystack tutorial.

Now that we’ve explored the evaluation of the retriever, let’s turn to evaluating the
reader.

Evaluating the Reader
In extractive QA, there are two main metrics that are used for evaluating readers:

Exact Match (EM)
A binary metric that gives EM = 1 if the characters in the predicted and ground
truth answers match exactly, and EM = 0 otherwise. If no answer is expected, the
model gets EM = 0 if it predicts any text at all.

F1-score
Measures the harmonic mean of the precision and recall.
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Let’s see how these metrics work by importing some helper functions from FARM
and applying them to a simple example:

from farm.evaluation.squad_evaluation import compute_f1, compute_exact

pred = "about 6000 hours"
label = "6000 hours"
print(f"EM: {compute_exact(label, pred)}")
print(f"F1: {compute_f1(label, pred)}")

EM: 0
F1: 0.8

Under the hood, these functions first normalize the prediction and label by removing
punctuation, fixing whitespace, and converting to lowercase. The normalized strings
are then tokenized as a bag-of-words, before finally computing the metric at the
token level. From this simple example we can see that EM is a much stricter metric
than the F1-score: adding a single token to the prediction gives an EM of zero. On the
other hand, the F1-score can fail to catch truly incorrect answers. For example, if our
predicted answer span is “about 6000 dollars”, then we get:

pred = "about 6000 dollars"
print(f"EM: {compute_exact(label, pred)}")
print(f"F1: {compute_f1(label, pred)}")

EM: 0
F1: 0.4

Relying on just the F1-score is thus misleading, and tracking both metrics is a good
strategy to balance the trade-off between underestimating (EM) and overestimating
(F1-score) model performance.

Now in general, there are multiple valid answers per question, so these metrics are
calculated for each question-answer pair in the evaluation set, and the best score is
selected over all possible answers. The overall EM and F1 scores for the model are
then obtained by averaging over the individual scores of each question-answer pair.

To evaluate the reader we’ll create a new pipeline with two nodes: a reader node and a
node to evaluate the reader. We’ll use the EvalReader class that takes the predictions
from the reader and computes the corresponding EM and F1 scores. To compare with
the SQuAD evaluation, we’ll take the best answers for each query with the top_1_em
and top_1_f1 metrics that are stored in EvalAnswers:
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from haystack.eval import EvalAnswers

def evaluate_reader(reader):
    score_keys = ['top_1_em', 'top_1_f1']
    eval_reader = EvalAnswers(skip_incorrect_retrieval=False)
    pipe = Pipeline()
    pipe.add_node(component=reader, name="QAReader", inputs=["Query"])
    pipe.add_node(component=eval_reader, name="EvalReader", inputs=["QAReader"])

    for l in labels_agg:
        doc = document_store.query(l.question,
                                   filters={"question_id":[l.origin]})
        _ = pipe.run(query=l.question, documents=doc, labels=l)

    return {k:v for k,v in eval_reader.__dict__.items() if k in score_keys}

reader_eval = {}
reader_eval["Fine-tune on SQuAD"] = evaluate_reader(reader)

Notice that we specified skip_incorrect_retrieval=False. This is to ensure that
the retriever always passes the context to the reader (as in the SQuAD evaluation).
Now that we’ve run every question through the reader, let’s print the scores:

def plot_reader_eval(reader_eval):
    fig, ax = plt.subplots()
    df = pd.DataFrame.from_dict(reader_eval)
    df.plot(kind="bar", ylabel="Score", rot=0, ax=ax)
    ax.set_xticklabels(["EM", "F1"])
    plt.legend(loc='upper left')
    plt.show()

plot_reader_eval(reader_eval)
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OK, it seems that the fine-tuned model performs significantly worse on SubjQA than
on SQuAD 2.0, where MiniLM achieves EM and F1 scores of 76.1 and 79.5, respec‐
tively. One reason for the performance drop is that customer reviews are quite differ‐
ent from the Wikipedia articles the SQuAD 2.0 dataset is generated from, and the
language they use is often informal. Another factor is likely the inherent subjectivity
of our dataset, where both questions and answers differ from the factual information
contained in Wikipedia. Let’s look at how to fine-tune a model on a dataset to get bet‐
ter results with domain adaptation.

Domain Adaptation
Although models that are fine-tuned on SQuAD will often generalize well to other
domains, we’ve seen that for SubjQA the EM and F1 scores of our model were much
worse than for SQuAD. This failure to generalize has also been observed in other
extractive QA datasets and is understood as evidence that transformer models are
particularly adept at overfitting to SQuAD.15 The most straightforward way to
improve the reader is by fine-tuning our MiniLM model further on the SubjQA train‐
ing set. The FARMReader has a train() method that is designed for this purpose and
expects the data to be in SQuAD JSON format, where all the question-answer pairs
are grouped together for each item as illustrated in Figure 7-11.
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Figure 7-11. Visualization of the SQuAD JSON format

This is quite a complex data format, so we’ll need a few functions and some Pandas
magic to help us do the conversion. The first thing we need to do is implement a
function that can create the paragraphs array associated with each product ID. Each
element in this array contains a single context (i.e., review) and a qas array of
question-answer pairs. Here’s a function that builds up the paragraphs array:

def create_paragraphs(df):
    paragraphs = []
    id2context = dict(zip(df["review_id"], df["context"]))
    for review_id, review in id2context.items():
        qas = []
        # Filter for all question-answer pairs about a specific context
        review_df = df.query(f"review_id == '{review_id}'")
        id2question = dict(zip(review_df["id"], review_df["question"]))
        # Build up the qas array
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        for qid, question in id2question.items():
            # Filter for a single question ID
            question_df = df.query(f"id == '{qid}'").to_dict(orient="list")
            ans_start_idxs = question_df["answers.answer_start"][0].tolist()
            ans_text = question_df["answers.text"][0].tolist()
            # Fill answerable questions
            if len(ans_start_idxs):
                answers = [
                    {"text": text, "answer_start": answer_start}
                    for text, answer_start in zip(ans_text, ans_start_idxs)]
                is_impossible = False
            else:
                answers = []
                is_impossible = True
            # Add question-answer pairs to qas
            qas.append({"question": question, "id": qid,
                        "is_impossible": is_impossible, "answers": answers})
        # Add context and question-answer pairs to paragraphs
        paragraphs.append({"qas": qas, "context": review})
    return paragraphs

Now, when we apply to the rows of a DataFrame associated with a single product ID,
we get the SQuAD format:

product = dfs["train"].query("title == 'B00001P4ZH'")
create_paragraphs(product)

[{'qas': [{'question': 'How is the bass?',
    'id': '2543d296da9766d8d17d040ecc781699',
    'is_impossible': True,
    'answers': []}],
  'context': 'I have had Koss headphones ...',
    'id': 'd476830bf9282e2b9033e2bb44bbb995',
    'is_impossible': False,
    'answers': [{'text': 'Bass is weak as expected', 'answer_start': 1302},
     {'text': 'Bass is weak as expected, even with EQ adjusted up',
      'answer_start': 1302}]}],
  'context': 'To anyone who hasn\'t tried all ...'},
 {'qas': [{'question': 'How is the bass?',
    'id': '455575557886d6dfeea5aa19577e5de4',
    'is_impossible': False,
    'answers': [{'text': 'The only fault in the sound is the bass',
      'answer_start': 650}]}],
  'context': "I have had many sub-$100 headphones ..."}]

The final step is to then apply this function to each product ID in the DataFrame of
each split. The following convert_to_squad() function does this trick and stores the
result in an electronics-{split}.json file:

import json

def convert_to_squad(dfs):
    for split, df in dfs.items():
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        subjqa_data = {}
        # Create `paragraphs` for each product ID
        groups = (df.groupby("title").apply(create_paragraphs)
            .to_frame(name="paragraphs").reset_index())
        subjqa_data["data"] = groups.to_dict(orient="records")
        # Save the result to disk
        with open(f"electronics-{split}.json", "w+", encoding="utf-8") as f:
            json.dump(subjqa_data, f)

convert_to_squad(dfs)

Now that we have the splits in the right format, let’s fine-tune our reader by specify‐
ing the locations of the train and dev splits, along with where to save the fine-tuned
model:

train_filename = "electronics-train.json"
dev_filename = "electronics-validation.json"

reader.train(data_dir=".", use_gpu=True, n_epochs=1, batch_size=16,
             train_filename=train_filename, dev_filename=dev_filename)

With the reader fine-tuned, let’s now compare its performance on the test set against
our baseline model:

reader_eval["Fine-tune on SQuAD + SubjQA"] = evaluate_reader(reader)
plot_reader_eval(reader_eval)

Wow, domain adaptation has increased our EM score by a factor of six and more than
doubled the F1-score! At this point, you might be wondering why we didn’t just fine-
tune a pretrained language model directly on the SubjQA training set. One reason is
that we only have 1,295 training examples in SubjQA while SQuAD has over 100,000,
so we might run into challenges with overfitting. Nevertheless, let’s take a look at what
naive fine-tuning produces. For a fair comparison, we’ll use the same language model
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that was used for fine-tuning our baseline on SQuAD. As before, we’ll load up the
model with the FARMReader:

minilm_ckpt = "microsoft/MiniLM-L12-H384-uncased"
minilm_reader = FARMReader(model_name_or_path=minilm_ckpt, progress_bar=False,
                           max_seq_len=max_seq_length, doc_stride=doc_stride,
                           return_no_answer=True)

Next, we fine-tune for one epoch:

minilm_reader.train(data_dir=".", use_gpu=True, n_epochs=1, batch_size=16,
             train_filename=train_filename, dev_filename=dev_filename)

and include the evaluation on the test set:

reader_eval["Fine-tune on SubjQA"] = evaluate_reader(minilm_reader)
plot_reader_eval(reader_eval)

We can see that fine-tuning the language model directly on SubjQA results in consid‐
erably worse performance than fine-tuning on SQuAD and SubjQA.

When dealing with small datasets, it is best practice to use cross-
validation when evaluating transformers as they can be prone to
overfitting. You can find an example of how to perform cross-
validation with SQuAD-formatted datasets in the FARM
repository.

Evaluating the Whole QA Pipeline
Now that we’ve seen how to evaluate the reader and retriever components individu‐
ally, let’s tie them together to measure the overall performance of our pipeline. To do
so, we’ll need to augment our retriever pipeline with nodes for the reader and its
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evaluation. We’ve seen that we get almost perfect recall at k = 10, so we can fix this
value and assess the impact this has on the reader’s performance (since it will now
receive multiple contexts per query compared to the SQuAD-style evaluation):

# Initialize retriever pipeline
pipe = EvalRetrieverPipeline(es_retriever)
# Add nodes for reader
eval_reader = EvalAnswers()
pipe.pipeline.add_node(component=reader, name="QAReader",
              inputs=["EvalRetriever"])
pipe.pipeline.add_node(component=eval_reader, name="EvalReader",
              inputs=["QAReader"])
# Evaluate!
run_pipeline(pipe)
# Extract metrics from reader
reader_eval["QA Pipeline (top-1)"] = {
    k:v for k,v in eval_reader.__dict__.items()
    if k in ["top_1_em", "top_1_f1"]}

We can then compare the top 1 EM and F1 scores for the model to predict an answer
in the documents returned by the retriever in Figure 7-12.

Figure 7-12. Comparison of EM and F1 scores for the reader against the whole QA
pipeline

From this plot we can see the effect that the retriever has on the overall performance.
In particular, there is an overall degradation compared to matching the question-
context pairs, as is done in the SQuAD-style evaluation. This can be circumvented by
increasing the number of possible answers that the reader is allowed to predict.

Until now we have only extracted answer spans from the context, but in general it
could be that bits and pieces of the answer are scattered throughout the document
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16 P. Lewis et al., “Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks”, (2020).

and we would like our model to synthesize these fragments into a single coherent
answer. Let’s have a look at how we can use generative QA to succeed at this task.

Going Beyond Extractive QA
One interesting alternative to extracting answers as spans of text in a document is to
generate them with a pretrained language model. This approach is often referred to as
abstractive or generative QA and has the potential to produce better-phrased answers
that synthesize evidence across multiple passages. Although less mature than extrac‐
tive QA, this is a fast-moving field of research, so chances are that these approaches
will be widely adopted in industry by the time you are reading this! In this section
we’ll briefly touch on the current state of the art: retrieval-augmented generation
(RAG).16

RAG extends the classic retriever-reader architecture that we’ve seen in this chapter
by swapping the reader for a generator and using DPR as the retriever. The generator
is a pretrained sequence-to-sequence transformer like T5 or BART that receives latent
vectors of documents from DPR and then iteratively generates an answer based on
the query and these documents. Since DPR and the generator are differentiable, the
whole process can be fine-tuned end-to-end as illustrated in Figure 7-13.

Figure 7-13. The RAG architecture for fine-tuning a retriever and generator end-to-end
(courtesy of Ethan Perez)

To show RAG in action we’ll use the DPRetriever from earlier, so we just need to
instantiate a generator. There are two types of RAG models to choose from:

RAG-Sequence
Uses the same retrieved document to generate the complete answer. In particular,
the top k documents from the retriever are fed to the generator, which produces
an output sequence for each document, and the result is marginalized to obtain
the best answer.
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RAG-Token
Can use a different document to generate each token in the answer. This allows
the generator to synthesize evidence from multiple documents.

Since RAG-Token models tend to perform better than RAG-Sequence ones, we’ll use
the token model that was fine-tuned on NQ as our generator. Instantiating a genera‐
tor in Haystack is similar to instantiating the reader, but instead of specifying the
max_seq_length and doc_stride parameters for a sliding window over the contexts,
we specify hyperparameters that control the text generation:

from haystack.generator.transformers import RAGenerator

generator = RAGenerator(model_name_or_path="facebook/rag-token-nq",
                        embed_title=False, num_beams=5)

Here num_beams specifies the number of beams to use in beam search (text generation
is covered at length in Chapter 5). As we did with the DPR retriever, we don’t embed
the document titles since our corpus is always filtered per product ID.

The next thing to do is tie together the retriever and generator using Haystack’s
GenerativeQAPipeline:

from haystack.pipeline import GenerativeQAPipeline

pipe = GenerativeQAPipeline(generator=generator, retriever=dpr_retriever)

In RAG, both the query encoder and the generator are trained end-
to-end, while the context encoder is frozen. In Haystack, the
GenerativeQAPipeline uses the query encoder from RAGenerator
and the context encoder from DensePassageRetriever.

Let’s now give RAG a spin by feeding in some queries about the Amazon Fire tablet
from before. To simplify the querying, we’ll write a simple function that takes the
query and prints out the top answers:

def generate_answers(query, top_k_generator=3):
    preds = pipe.run(query=query, top_k_generator=top_k_generator,
                     top_k_retriever=5, filters={"item_id":["B0074BW614"]})
    print(f"Question: {preds['query']} \n")
    for idx in range(top_k_generator):
        print(f"Answer {idx+1}: {preds['answers'][idx]['answer']}")

OK, now we’re ready to give it a test:

generate_answers(query)

Question: Is it good for reading?

Answer 1:  the screen is absolutely beautiful
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Answer 2:  the Screen is absolutely beautiful
Answer 3:  Kindle fire

This result isn’t too bad for an answer, but it does suggest that the subjective nature of
the question is confusing the generator. Let’s try with something a bit more factual:

generate_answers("What is the main drawback?")

Question: What is the main drawback?

Answer 1:  the price
Answer 2:  no flash support
Answer 3:  the cost

This is more sensible! To get better results we could fine-tune RAG end-to-end on
SubjQA; we’ll leave this as an exercise, but if you’re interested in exploring it there are
scripts in the  Transformers repository to help you get started.

Conclusion
Well, that was a whirlwind tour of QA, and you probably have many more questions
that you’d like answered (pun intended!). In this chapter, we discussed two
approaches to QA (extractive and generative) and examined two different retrieval
algorithms (BM25 and DPR). Along the way, we saw that domain adaptation can be a
simple technique to boost the performance of our QA system by a significant margin,
and we looked at a few of the most common metrics that are used for evaluating such
systems. Although we focused on closed-domain QA (i.e., a single domain of elec‐
tronic products), the techniques in this chapter can easily be generalized to the open-
domain case; we recommend reading Cloudera’s excellent Fast Forward QA series to
see what’s involved.

Deploying QA systems in the wild can be a tricky business to get right, and our expe‐
rience is that a significant part of the value comes from first providing end users with
useful search capabilities, followed by an extractive component. In this respect, the
reader can be used in novel ways beyond answering on-demand user queries. For
example, researchers at Grid Dynamics were able to use their reader to automatically
extract a set of pros and cons for each product in a client’s catalog. They also showed
that a reader can be used to extract named entities in a zero-shot fashion by creating
queries like “What kind of camera?” Given its infancy and subtle failure modes, we
recommend exploring generative QA only once the other two approaches have been
exhausted. This “hierarchy of needs” for tackling QA problems is illustrated in
Figure 7-14.
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17 A. Talmor et al., “MultiModalQA: Complex Question Answering over Text, Tables and Images”, (2021).
18 P. Lewis et al., “PAQ: 65 Million Probably-Asked Questions and What You Can Do with Them”, (2021); A.

Riabi et al., “Synthetic Data Augmentation for Zero-Shot Cross-Lingual Question Answering”, (2020).

Figure 7-14. The QA hierarchy of needs

Looking ahead, one exciting research area is multimodal QA, which involves QA over
multiple modalities like text, tables, and images. As described in the MultiModalQA
benchmark,17 such systems could enable users to answer complex questions that inte‐
grate information across different modalities, like “When was the famous painting
with two touching fingers completed?” Another area with practical business applica‐
tions is QA over a knowledge graph, where the nodes of the graph correspond to real-
world entities and their relations are defined by the edges. By encoding factoids as
(subject, predicate, object) triples, one can use the graph to answer questions about a
missing element. For an example that combines transformers with knowledge graphs,
see the Haystack tutorials. One more promising direction is automatic question gener‐
ation as a way to do some form of unsupervised/weakly supervised training using
unlabeled data or data augmentation. Two recent examples include the papers on the
Probably Answered Questions (PAQ) benchmark and synthetic data augmentation
for cross-lingual settings.18

In this chapter we’ve seen that in order to successfully use QA models for real-world
use cases we need to apply a few tricks, such as implementing a fast retrieval pipeline
to make predictions in near real time. Still, applying a QA model to a handful of pre‐
selected documents can take a couple of seconds on production hardware. Although
this may not sound like much, imagine how different your experience would be if you
had to wait a few seconds to get the results of a Google search—a few seconds of wait
time can decide the fate of your transformer-powered application. In the next chapter
we’ll have a look at a few methods to accelerate model predictions further.
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CHAPTER 8

Making Transformers Efficient
in Production

In the previous chapters, you’ve seen how transformers can be fine-tuned to produce
great results on a wide range of tasks. However, in many situations accuracy (or what‐
ever metric you’re optimizing for) is not enough; your state-of-the-art model is not
very useful if it’s too slow or large to meet the business requirements of your applica‐
tion. An obvious alternative is to train a faster and more compact model, but the
reduction in model capacity is often accompanied by a degradation in performance.
So what can you do when you need a fast, compact, yet highly accurate model?

In this chapter we will explore four complementary techniques that can be used to
speed up the predictions and reduce the memory footprint of your transformer mod‐
els: knowledge distillation, quantization, pruning, and graph optimization with the
Open Neural Network Exchange (ONNX) format and ONNX Runtime (ORT). We’ll
also see how some of these techniques can be combined to produce significant per‐
formance gains. For example, this was the approach taken by the Roblox engineering
team in their article “How We Scaled Bert to Serve 1+ Billion Daily Requests on
CPUs”, who as shown in Figure 8-1 found that combining knowledge distillation and
quantization enabled them to improve the latency and throughput of their BERT clas‐
sifier by over a factor of 30!
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Figure 8-1. How Roblox scaled BERT with knowledge distillation, dynamic padding, and
weight quantization (photo courtesy of Roblox employees Quoc N. Le and Kip Kaehler)

To illustrate the benefits and trade-offs associated with each technique, we’ll use
intent detection as a case study; this is an important component of text-based assis‐
tants, where low latencies are critical for maintaining a conversation in real time.
Along the way you’ll learn how to create custom trainers, perform efficient hyper‐
parameter search, and gain a sense of what it takes to implement cutting-edge
research with  Transformers. Let’s dive in!

Intent Detection as a Case Study
Let’s suppose that we’re trying to build a text-based assistant for our company’s call
center so that customers can request their account balance or make bookings without
needing to speak with a human agent. In order to understand the goals of a customer,
our assistant will need to be able to classify a wide variety of natural language text
into a set of predefined actions or intents. For example, a customer might send a mes‐
sage like the following about an upcoming trip:

Hey, I’d like to rent a vehicle from Nov 1st to Nov 15th in Paris and I need a 15 passen‐
ger van

and our intent classifier could automatically categorize this as a Car Rental intent,
which then triggers an action and response. To be robust in a production environ‐
ment, our classifier will also need to be able to handle out-of-scope queries, where a
customer makes a query that doesn’t belong to any of the predefined intents and the
system should yield a fallback response. For example, in the second case shown in
Figure 8-2, a customer asks a question about sports (which is out of scope), and the
text assistant mistakenly classifies it as one of the known in-scope intents and returns
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1 S. Larson et al., “An Evaluation Dataset for Intent Classification and Out-of-Scope Prediction”, (2019).

the payday response. In the third case, the text assistant has been trained to detect
out-of-scope queries (usually labeled as a separate class) and informs the customer
about which topics it can answer questions about.

Figure 8-2. Three exchanges between a human (right) and a text-based assistant (left)
for personal finance (courtesy of Stefan Larson et al.)

As a baseline, we’ve fine-tuned a BERT-base model that achieves around 94% accu‐
racy on the CLINC150 dataset.1 This dataset includes 22,500 in-scope queries across
150 intents and 10 domains like banking and travel, and also includes 1,200 out-of-
scope queries that belong to an oos intent class. In practice we would also gather our
own in-house dataset, but using public data is a great way to iterate quickly and gen‐
erate preliminary results.

To get started, let’s download our fine-tuned model from the Hugging Face Hub and
wrap it in a pipeline for text classification:

from transformers import pipeline

bert_ckpt = "transformersbook/bert-base-uncased-finetuned-clinc"
pipe = pipeline("text-classification", model=bert_ckpt)

Now that we have a pipeline, we can pass a query to get the predicted intent and con‐
fidence score from the model:
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2 As described by Emmanuel Ameisen in Building Machine Learning Powered Applications (O’Reilly), business
or product metrics are the most important ones to consider. After all, it doesn’t matter how accurate your
model is if it doesn’t solve a problem your business cares about. In this chapter we’ll assume that you have
already defined the metrics that matter for your application and focus on optimizing the model metrics.

query = """Hey, I'd like to rent a vehicle from Nov 1st to Nov 15th in
Paris and I need a 15 passenger van"""
pipe(query)

[{'label': 'car_rental', 'score': 0.549003541469574}]

Great, the car_rental intent makes sense. Let’s now look at creating a benchmark
that we can use to evaluate the performance of our baseline model.

Creating a Performance Benchmark
Like other machine learning models, deploying transformers in production environ‐
ments involves a trade-off among several constraints, the most common being:2

Model performance
How well does our model perform on a well-crafted test set that reflects produc‐
tion data? This is especially important when the cost of making errors is large
(and best mitigated with a human in the loop), or when we need to run inference
on millions of examples and small improvements to the model metrics can trans‐
late into large gains in aggregate.

Latency
How fast can our model deliver predictions? We usually care about latency in
real-time environments that deal with a lot of traffic, like how Stack Overflow
needed a classifier to quickly detect unwelcome comments on the website.

Memory
How can we deploy billion-parameter models like GPT-2 or T5 that require giga‐
bytes of disk storage and RAM? Memory plays an especially important role in
mobile or edge devices, where a model has to generate predictions without access
to a powerful cloud server.

Failing to address these constraints can have a negative impact on the user experience
of your application. More commonly, it can lead to ballooning costs from running
expensive cloud servers that may only need to handle a few requests. To explore how
each of these constraints can be optimized with various compression techniques, let’s
begin by creating a simple benchmark that measures each quantity for a given pipe‐
line and test set. A skeleton of what we’ll need is given by the following class:

class PerformanceBenchmark:
    def __init__(self, pipeline, dataset, optim_type="BERT baseline"):
        self.pipeline = pipeline
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        self.dataset = dataset
        self.optim_type = optim_type

    def compute_accuracy(self):
        # We'll define this later
        pass

    def compute_size(self):
        # We'll define this later
        pass

    def time_pipeline(self):
        # We'll define this later
        pass

    def run_benchmark(self):
        metrics = {}
        metrics[self.optim_type] = self.compute_size()
        metrics[self.optim_type].update(self.time_pipeline())
        metrics[self.optim_type].update(self.compute_accuracy())
        return metrics

We’ve defined an optim_type parameter to keep track of the different optimization
techniques that we’ll cover in this chapter. We’ll use the run_benchmark() method to
collect all the metrics in a dictionary, with keys given by optim_type.

Let’s now put some flesh on the bones of this class by computing the model accuracy
on the test set. First we need some data to test on, so let’s download the CLINC150
dataset that was used to fine-tune our baseline model. We can get the dataset from the
Hub with  Datasets as follows:

from datasets import load_dataset

clinc = load_dataset("clinc_oos", "plus")

Here, the plus configuration refers to the subset that contains the out-of-scope train‐
ing examples. Each example in the CLINC150 dataset consists of a query in the text
column and its corresponding intent. We’ll use the test set to benchmark our models,
so let’s take a look at one of the dataset’s examples:

sample = clinc["test"][42]
sample

{'intent': 133, 'text': 'transfer $100 from my checking to saving account'}

The intents are provided as IDs, but we can easily get the mapping to strings (and
vice versa) by accessing the features attribute of the dataset:

intents = clinc["test"].features["intent"]
intents.int2str(sample["intent"])

'transfer'
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Now that we have a basic understanding of the contents in the CLINC150 dataset,
let’s implement the compute_accuracy() method of PerformanceBenchmark. Since
the dataset is balanced across the intent classes, we’ll use accuracy as our metric. We
can load this metric with  Datasets as follows:

from datasets import load_metric

accuracy_score = load_metric("accuracy")

The accuracy metric expects the predictions and references (i.e., the ground truth
labels) to be integers. We can use the pipeline to extract the predictions from the text
field and then use the str2int() method of our intents object to map each predic‐
tion to its corresponding ID. The following code collects all the predictions and labels
in lists before returning the accuracy on the dataset. Let’s also add it to our Perform
anceBenchmark class:

def compute_accuracy(self):
    """This overrides the PerformanceBenchmark.compute_accuracy() method"""
    preds, labels = [], []
    for example in self.dataset:
        pred = self.pipeline(example["text"])[0]["label"]
        label = example["intent"]
        preds.append(intents.str2int(pred))
        labels.append(label)
    accuracy = accuracy_score.compute(predictions=preds, references=labels)
    print(f"Accuracy on test set - {accuracy['accuracy']:.3f}")
    return accuracy

PerformanceBenchmark.compute_accuracy = compute_accuracy

Next, let’s compute the size of our model by using the torch.save() function from
PyTorch to serialize the model to disk. Under the hood, torch.save() uses Python’s
pickle module and can be used to save anything from models to tensors to ordinary
Python objects. In PyTorch, the recommended way to save a model is by using its
state_dict, which is a Python dictionary that maps each layer in a model to its
learnable parameters (i.e., weights and biases). Let’s see what is stored in the
state_dict of our baseline model:

list(pipe.model.state_dict().items())[42]

('bert.encoder.layer.2.attention.self.value.weight',
 tensor([[-1.0526e-02, -3.2215e-02,  2.2097e-02,  ..., -6.0953e-03,
           4.6521e-03,  2.9844e-02],
         [-1.4964e-02, -1.0915e-02,  5.2396e-04,  ...,  3.2047e-05,
          -2.6890e-02, -2.1943e-02],
         [-2.9640e-02, -3.7842e-03, -1.2582e-02,  ..., -1.0917e-02,
           3.1152e-02, -9.7786e-03],
         ...,
         [-1.5116e-02, -3.3226e-02,  4.2063e-02,  ..., -5.2652e-03,
           1.1093e-02,  2.9703e-03],
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         [-3.6809e-02,  5.6848e-02, -2.6544e-02,  ..., -4.0114e-02,
           6.7487e-03,  1.0511e-03],
         [-2.4961e-02,  1.4747e-03, -5.4271e-02,  ...,  2.0004e-02,
           2.3981e-02, -4.2880e-02]]))

We can clearly see that each key/value pair corresponds to a specific layer and tensor
in BERT. So if we save our model with:

torch.save(pipe.model.state_dict(), "model.pt")

we can then use the Path.stat() function from Python’s pathlib module to get
information about the underlying files. In particular, Path( "model. pt"). stat().
st_size will give us the model size in bytes. Let’s put this all together in the compute_
size() function and add it to PerformanceBenchmark:

import torch
from pathlib import Path

def compute_size(self):
    """This overrides the PerformanceBenchmark.compute_size() method"""
    state_dict = self.pipeline.model.state_dict()
    tmp_path = Path("model.pt")
    torch.save(state_dict, tmp_path)
    # Calculate size in megabytes
    size_mb = Path(tmp_path).stat().st_size / (1024 * 1024)
    # Delete temporary file
    tmp_path.unlink()
    print(f"Model size (MB) - {size_mb:.2f}")
    return {"size_mb": size_mb}

PerformanceBenchmark.compute_size = compute_size

Finally let’s implement the time_pipeline() function so that we can time the average
latency per query. For this application, latency refers to the time it takes to feed a text
query to the pipeline and return the predicted intent from the model. Under the hood
the pipeline also tokenizes the text, but this is around one thousand times faster than
generating the predictions and thus adds a negligible contribution to the overall
latency. A simple way to measure the execution time of a code snippet is to use the
perf_counter() function from Python’s time module. This function has a better time
resolution than the time.time() function and is well suited for getting precise
results.

We can use perf_counter() to time our pipeline by passing our test query and calcu‐
lating the time difference in milliseconds between the start and end:

from time import perf_counter

for _ in range(3):
    start_time = perf_counter()
    _ = pipe(query)
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    latency = perf_counter() - start_time
    print(f"Latency (ms) - {1000 * latency:.3f}")

Latency (ms) - 85.367
Latency (ms) - 85.241
Latency (ms) - 87.275

These results exhibit quite some spread in the latencies and suggest that timing a sin‐
gle pass through the pipeline can give wildly different results each time we run the
code. So instead, we’ll collect the latencies over many runs and then use the resulting
distribution to calculate the mean and standard deviation, which will give us an idea
about the spread in values. The following code does what we need and includes a
phase to warm up the CPU before performing the actual timed run:

import numpy as np

def time_pipeline(self, query="What is the pin number for my account?"):
    """This overrides the PerformanceBenchmark.time_pipeline() method"""
    latencies = []
    # Warmup
    for _ in range(10):
        _ = self.pipeline(query)
    # Timed run
    for _ in range(100):
        start_time = perf_counter()
        _ = self.pipeline(query)
        latency = perf_counter() - start_time
        latencies.append(latency)
    # Compute run statistics
    time_avg_ms = 1000 * np.mean(latencies)
    time_std_ms = 1000 * np.std(latencies)
    print(f"Average latency (ms) - {time_avg_ms:.2f} +\- {time_std_ms:.2f}")
    return {"time_avg_ms": time_avg_ms, "time_std_ms": time_std_ms}

PerformanceBenchmark.time_pipeline = time_pipeline

To keeps things simple, we’ll use the same query value to benchmark all our models.
In general, the latency will depend on the query length, and a good practice is to
benchmark your models with queries that they’re likely to encounter in production
environments.

Now that our PerformanceBenchmark class is complete, let’s give it a spin! Let’s start
by benchmarking our BERT baseline. For the baseline model, we just need to pass the
pipeline and the dataset we wish to perform the benchmark on. We’ll collect the
results in the perf_metrics dictionary to keep track of each model’s performance:

pb = PerformanceBenchmark(pipe, clinc["test"])
perf_metrics = pb.run_benchmark()

Model size (MB) - 418.16
Average latency (ms) - 54.20 +\- 1.91
Accuracy on test set - 0.867
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3 C. Buciluă et al., “Model Compression,” Proceedings of the 12th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (August 2006): 535–541, https://doi.org/10.1145/1150402.1150464.

4 G. Hinton, O. Vinyals, and J. Dean, “Distilling the Knowledge in a Neural Network”, (2015).
5 W. Fedus, B. Zoph, and N. Shazeer, “Switch Transformers: Scaling to Trillion Parameter Models with Simple

and Efficient Sparsity”, (2021).
6 Geoff Hinton coined this term in a talk to refer to the observation that softened probabilities reveal the hid‐

den knowledge of the teacher.

Now that we have a reference point, let’s look at our first compression technique:
knowledge distillation.

The average latency values will differ depending on what type of
hardware you are running on. For example, you can usually get
better performance by running inference on a GPU since it enables
batch processing. For the purposes of this chapter, what’s important
is the relative difference in latencies between models. Once we have
determined the best-performing model, we can then explore differ‐
ent backends to reduce the absolute latency if needed.

Making Models Smaller via Knowledge Distillation
Knowledge distillation is a general-purpose method for training a smaller student
model to mimic the behavior of a slower, larger, but better-performing teacher. Origi‐
nally introduced in 2006 in the context of ensemble models,3 it was later popularized
in a famous 2015 paper that generalized the method to deep neural networks and
applied it to image classification and automatic speech recognition.4

Given the trend toward pretraining language models with ever-increasing parameter
counts (the largest at the time of writing having over one trillion parameters),5 knowl‐
edge distillation has also become a popular strategy to compress these huge models
and make them more suitable for building practical applications.

Knowledge Distillation for Fine-Tuning
So how is knowledge actually “distilled” or transferred from the teacher to the student
during training? For supervised tasks like fine-tuning, the main idea is to augment
the ground truth labels with a distribution of “soft probabilities” from the teacher
which provide complementary information for the student to learn from. For exam‐
ple, if our BERT-base classifier assigns high probabilities to multiple intents, then this
could be a sign that these intents lie close to each other in the feature space. By train‐
ing the student to mimic these probabilities, the goal is to distill some of this “dark
knowledge”6 that the teacher has learned—that is, knowledge that is not available
from the labels alone.
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7 We also encountered temperature in the context of text generation in Chapter 5.

Mathematically, the way this works is as follows. Suppose we feed an input sequence x
to the teacher to generate a vector of logits � x  = [z1 x , ..., zN x ]. We can convert
these logits into probabilities by applying a softmax function:

exp zi x
∑ j exp zi x

This isn’t quite what we want, though, because in many cases the teacher will assign a
high probability to one class, with all other class probabilities close to zero. When that
happens, the teacher doesn’t provide much additional information beyond the
ground truth labels, so instead we “soften” the probabilities by scaling the logits with
a temperature hyperparameter T before applying the softmax:7

pi x =
exp zi x /T

∑ j exp zi x /T

As shown in Figure 8-3, higher values of T produce a softer probability distribution
over the classes and reveal much more information about the decision boundary that
the teacher has learned for each training example. When T = 1 we recover the origi‐
nal softmax distribution.

Figure 8-3. Comparison of a hard label that is one-hot encoded (left), softmax probabili‐
ties (middle), and softened class probabilities (right)

Since the student also produces softened probabilities qi x  of its own, we can use the
Kullback–Leibler (KL) divergence to measure the difference between the two proba‐
bility distributions:

DKL p, q = ∑
i

pi x log
pi x
qi x
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With the KL divergence we can calculate how much is lost when we approximate the
probability distribution of the teacher with the student. This allows us to define a
knowledge distillation loss:

LKD = T2DKL

where T2 is a normalization factor to account for the fact that the magnitude of the
gradients produced by soft labels scales as 1/T2. For classification tasks, the student
loss is then a weighted average of the distillation loss with the usual cross-entropy loss
LCE of the ground truth labels:

Lstudent = αLCE + 1 − α LKD

where α is a hyperparameter that controls the relative strength of each loss. A dia‐
gram of the whole process is shown in Figure 8-4; the temperature is set to 1 at infer‐
ence time to recover the standard softmax probabilities.

Figure 8-4. The knowledge distillation process
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8 V. Sanh et al., “DistilBERT, a Distilled Version of BERT: Smaller, Faster, Cheaper and Lighter”, (2019).

Knowledge Distillation for Pretraining
Knowledge distillation can also be used during pretraining to create a general-
purpose student that can be subsequently fine-tuned on downstream tasks. In this
case, the teacher is a pretrained language model like BERT, which transfers its knowl‐
edge about masked language modeling to the student. For example, in the DistilBERT
paper,8 the masked language modeling loss Lmlm is augmented with a term from
knowledge distillation and a cosine embedding loss Lcos = 1 − cos hs, ht  to align the
directions of the hidden state vectors between the teacher and student:

LDistilBERT = αLmlm + βLKD + γLcos

Since we already have a fine-tuned BERT-base model, let’s see how we can use knowl‐
edge distillation to fine-tune a smaller and faster model. To do that we’ll need a way
to augment the cross-entropy loss with an LKD term. Fortunately we can do this by
creating our own trainer!

Creating a Knowledge Distillation Trainer
To implement knowledge distillation we need to add a few things to the Trainer base
class:

• The new hyperparameters α and T, which control the relative weight of the distil‐
lation loss and how much the probability distribution of the labels should be
smoothed

• The fine-tuned teacher model, which in our case is BERT-base
• A new loss function that combines the cross-entropy loss with the knowledge

distillation loss

Adding the new hyperparameters is quite simple, since we just need to subclass
TrainingArguments and include them as new attributes:

from transformers import TrainingArguments

class DistillationTrainingArguments(TrainingArguments):
    def __init__(self, *args, alpha=0.5, temperature=2.0, **kwargs):
        super().__init__(*args, **kwargs)
        self.alpha = alpha
        self.temperature = temperature
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For the trainer itself, we need a new loss function. The way to implement this is by
subclassing Trainer and overriding the compute_loss() method to include the
knowledge distillation loss term LKD:

import torch.nn as nn
import torch.nn.functional as F
from transformers import Trainer

class DistillationTrainer(Trainer):
    def __init__(self, *args, teacher_model=None, **kwargs):
        super().__init__(*args, **kwargs)
        self.teacher_model = teacher_model

    def compute_loss(self, model, inputs, return_outputs=False):
        outputs_stu = model(**inputs)
        # Extract cross-entropy loss and logits from student
        loss_ce = outputs_stu.loss
        logits_stu = outputs_stu.logits
        # Extract logits from teacher
        with torch.no_grad():
            outputs_tea = self.teacher_model(**inputs)
            logits_tea = outputs_tea.logits
        # Soften probabilities and compute distillation loss
        loss_fct = nn.KLDivLoss(reduction="batchmean")
        loss_kd = self.args.temperature ** 2 * loss_fct(
            F.log_softmax(logits_stu / self.args.temperature, dim=-1),
            F.softmax(logits_tea / self.args.temperature, dim=-1))
        # Return weighted student loss
        loss = self.args.alpha * loss_ce + (1. - self.args.alpha) * loss_kd
        return (loss, outputs_stu) if return_outputs else loss

Let’s unpack this code a bit. When we instantiate DistillationTrainer we pass a
teacher_model argument with a teacher that has already been fine-tuned on our task.
Next, in the compute_loss() method we extract the logits from the student and
teacher, scale them by the temperature, and then normalize them with a softmax
before passing them to PyTorch’s nn.KLDivLoss() function for computing the KL
divergence. One quirk with nn.KLDivLoss() is that it expects the inputs in the form
of log probabilities and the labels as normal probabilities. That’s why we’ve used the
F.log_softmax() function to normalize the student’s logits, while the teacher’s logits
are converted to probabilities with a standard softmax. The reduction=batchmean
argument in nn.KLDivLoss() specifies that we average the losses over the batch
dimension.

You can also perform knowledge distillation with the Keras API of
the  Transformers library. To do this, you’ll need to implement a
custom Distiller class that overrides the train_step(),
test_step(), and compile() methods of tf.keras.Model(). See
the Keras documentation for an example of how to do this.
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9 Y. Kim and H. Awadalla, “FastFormers: Highly Efficient Transformer Models for Natural Language Under‐
standing”, (2020).

10 By default, the Trainer looks for a column called labels when fine-tuning on classification tasks. You can
also override this behavior by specifying the label_names argument of TrainingArguments.

Choosing a Good Student Initialization
Now that we have our custom trainer, the first question you might have is which pre‐
trained language model should we pick for the student? In general we should pick a
smaller model for the student to reduce the latency and memory footprint. A good
rule of thumb from the literature is that knowledge distillation works best when the
teacher and student are of the same model type.9 One possible reason for this is that
different model types, say BERT and RoBERTa, can have different output embedding
spaces, which hinders the ability of the student to mimic the teacher. In our case
study the teacher is BERT, so DistilBERT is a natural candidate to initialize the stu‐
dent with since it has 40% fewer parameters and has been shown to achieve strong
results on downstream tasks.

First we’ll need to tokenize and encode our queries, so let’s instantiate the tokenizer
from DistilBERT and create a simple tokenize_text() function to take care of the
preprocessing:

from transformers import AutoTokenizer

student_ckpt = "distilbert-base-uncased"
student_tokenizer = AutoTokenizer.from_pretrained(student_ckpt)

def tokenize_text(batch):
    return student_tokenizer(batch["text"], truncation=True)

clinc_enc = clinc.map(tokenize_text, batched=True, remove_columns=["text"])
clinc_enc = clinc_enc.rename_column("intent", "labels")

Here we’ve removed the text column since we no longer need it, and we’ve also
renamed the intent column to labels so it can be automatically detected by the
trainer.10

Now that we’ve processed our texts, the next thing we need to do is define the hyper‐
parameters and compute_metrics() function for our DistillationTrainer. We’ll
also push all of our models to the Hugging Face Hub, so let’s start by logging in to our
account:

from huggingface_hub import notebook_login

notebook_login()
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11 This approach of fine-tuning a general-purpose, distilled language model is sometimes referred to as “task-
agnostic” distillation.

Next, we’ll define the metrics to track during training. As we did in the performance
benchmark, we’ll use accuracy as the main metric. This means we can reuse our
accuracy_score() function in the compute_metrics() function that we’ll include in
DistillationTrainer:

def compute_metrics(pred):
    predictions, labels = pred
    predictions = np.argmax(predictions, axis=1)
    return accuracy_score.compute(predictions=predictions, references=labels)

In this function, the predictions from the sequence modeling head come in the form
of logits, so we use the np.argmax() function to find the most confident class predic‐
tion and compare that against the ground truth label.

Next we need to define the training arguments. To warm up, we’ll set α = 1 to see how
well DistilBERT performs without any signal from the teacher.11 Then we will push
our fine-tuned model to a new repository called distilbert-base-uncased-

finetuned-clinc, so we just need to specify that in the output_dir argument of
DistillationTrainingArguments:

batch_size = 48

finetuned_ckpt = "distilbert-base-uncased-finetuned-clinc"
student_training_args = DistillationTrainingArguments(
    output_dir=finetuned_ckpt, evaluation_strategy = "epoch",
    num_train_epochs=5, learning_rate=2e-5,
    per_device_train_batch_size=batch_size,
    per_device_eval_batch_size=batch_size, alpha=1, weight_decay=0.01,
    push_to_hub=True)

We’ve also tweaked a few of the default hyperparameter values, like the number of
epochs, the weight decay, and the learning rate. The next thing to do is initialize a
student model. Since we will be doing multiple runs with the trainer, we’ll create a
student_init() function to initialize the model with each new run. When we pass
this function to the DistillationTrainer, this will ensure we initialize a new model
each time we call the train() method.

One other thing we need to do is provide the student model with the mappings
between each intent and label ID. These mappings can be obtained from our BERT-
base model that we downloaded in the pipeline:

id2label = pipe.model.config.id2label
label2id = pipe.model.config.label2id
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With these mappings, we can now create a custom model configuration with the
AutoConfig class hat we encountered in Chapters 3 and 4. Let’s use this to create a
configuration for our student with the information about the label mappings:

from transformers import AutoConfig

num_labels = intents.num_classes
student_config = (AutoConfig
                  .from_pretrained(student_ckpt, num_labels=num_labels,
                                   id2label=id2label, label2id=label2id))

Here we’ve also specified the number of classes our model should expect. We can then
provide this configuration to the from_pretrained() function of the AutoModelFor
SequenceClassification class as follows:

import torch
from transformers import AutoModelForSequenceClassification

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

def student_init():
    return (AutoModelForSequenceClassification
            .from_pretrained(student_ckpt, config=student_config).to(device))

We now have all the ingredients needed for our distillation trainer, so let’s load the
teacher and fine-tune:

teacher_ckpt = "transformersbook/bert-base-uncased-finetuned-clinc"
teacher_model = (AutoModelForSequenceClassification
                 .from_pretrained(teacher_ckpt, num_labels=num_labels)
                 .to(device))

distilbert_trainer = DistillationTrainer(model_init=student_init,
    teacher_model=teacher_model, args=student_training_args,
    train_dataset=clinc_enc['train'], eval_dataset=clinc_enc['validation'],
    compute_metrics=compute_metrics, tokenizer=student_tokenizer)

distilbert_trainer.train()

Epoch Training Loss Validation Loss Accuracy

1 4.2923 3.289337 0.742258

2 2.6307 1.883680 0.828065

3 1.5483 1.158315 0.896774

4 1.0153 0.861815 0.909355

5 0.7958 0.777289 0.917419

The 92% accuracy on the validation set looks quite good compared to the 94% that
the BERT-base teacher achieves. Now that we’ve fine-tuned DistilBERT, let’s push the
model to the Hub so we can reuse it later:
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distilbert_trainer.push_to_hub("Training completed!")

With our model now safely stored on the Hub, we can immediately use it in a pipeline
for our performance benchmark:

finetuned_ckpt = "transformersbook/distilbert-base-uncased-finetuned-clinc"
pipe = pipeline("text-classification", model=finetuned_ckpt)

We can then pass this pipeline to our PerformanceBenchmark class to compute the
metrics associated with this model:

optim_type = "DistilBERT"
pb = PerformanceBenchmark(pipe, clinc["test"], optim_type=optim_type)
perf_metrics.update(pb.run_benchmark())

Model size (MB) - 255.89
Average latency (ms) - 27.53 +\- 0.60
Accuracy on test set - 0.858

To compare these results against our baseline, let’s create a scatter plot of the accuracy
against the latency, with the radius of each point corresponding to the size of the
model on disk. The following function does what we need and marks the current
optimization type as a dashed circle to aid the comparison to previous results:

import pandas as pd

def plot_metrics(perf_metrics, current_optim_type):
    df = pd.DataFrame.from_dict(perf_metrics, orient='index')

    for idx in df.index:
        df_opt = df.loc[idx]
        # Add a dashed circle around the current optimization type
        if idx == current_optim_type:
            plt.scatter(df_opt["time_avg_ms"], df_opt["accuracy"] * 100,
                        alpha=0.5, s=df_opt["size_mb"], label=idx,
                        marker='$\u25CC$')
        else:
            plt.scatter(df_opt["time_avg_ms"], df_opt["accuracy"] * 100,
                        s=df_opt["size_mb"], label=idx, alpha=0.5)

    legend = plt.legend(bbox_to_anchor=(1,1))
    for handle in legend.legendHandles:
        handle.set_sizes([20])

    plt.ylim(80,90)
    # Use the slowest model to define the x-axis range
    xlim = int(perf_metrics["BERT baseline"]["time_avg_ms"] + 3)
    plt.xlim(1, xlim)
    plt.ylabel("Accuracy (%)")
    plt.xlabel("Average latency (ms)")
    plt.show()

plot_metrics(perf_metrics, optim_type)
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12 T. Akiba et al., “Optuna: A Next-Generation Hyperparameter Optimization Framework”, (2019).

From the plot we can see that by using a smaller model we’ve managed to signifi‐
cantly decrease the average latency. And all this at the price of just over a 1% reduc‐
tion in accuracy! Let’s see if we can close that last gap by including the distillation loss
of the teacher and finding good values for α and T.

Finding Good Hyperparameters with Optuna
To find good values for α and T, we could do a grid search over the 2D parameter
space. But a much better alternative is to use Optuna,12 which is an optimization
framework designed for just this type of task. Optuna formulates the search problem
in terms of an objective function that is optimized through multiple trials. For exam‐
ple, suppose we wished to minimize Rosenbrock’s “banana function”:

f x, y = 1 − x 2 + 100 y − x2 2

which is a famous test case for optimization frameworks. As shown in Figure 8-5, the
function gets its name from the curved contours and has a global minimum at
x, y = 1, 1 . Finding the valley is an easy optimization problem, but converging to

the global minimum is not.
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Figure 8-5. Plot of the Rosenbrock function of two variables

In Optuna, we can find the minimum of f x, y  by defining an objective() function
that returns the value of f x, y :

def objective(trial):
    x = trial.suggest_float("x", -2, 2)
    y = trial.suggest_float("y", -2, 2)
    return (1 - x) ** 2 + 100 * (y - x ** 2) ** 2

The trial.suggest_float object specifies the parameter ranges to sample uniformly
from; Optuna also provides suggest_int and suggest_categorical for integer and
categorical parameters, respectively. Optuna collects multiple trials as a study, so to
create one we just pass the objective() function to study.optimize() as follows:

import optuna

study = optuna.create_study()
study.optimize(objective, n_trials=1000)

Once the study is completed, we can then find the best parameters as follows:

study.best_params

{'x': 1.003024865971437, 'y': 1.00315167589307}

We see that with one thousand trials, Optuna has managed to find values for x and y
that are reasonably close to the global minimum. To use Optuna in  Transformers,
we use similar logic by first defining the hyperparameter space that we wish to opti‐
mize over. In addition to α and T, we’ll include the number of training epochs as
follows:
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def hp_space(trial):
    return {"num_train_epochs": trial.suggest_int("num_train_epochs", 5, 10),
        "alpha": trial.suggest_float("alpha", 0, 1),
        "temperature": trial.suggest_int("temperature", 2, 20)}

Running the hyperparameter search with the Trainer is then quite simple; we just
need to specify the number of trials to run and a direction to optimize for. Because we
want the best possible accuracy, we specify direction="maximize" in the hyper
parameter_ search() method of the trainer and pass the hyperparameter search
space as follows:

best_run = distilbert_trainer.hyperparameter_search(
    n_trials=20, direction="maximize", hp_space=hp_space)

The hyperparameter_search() method returns a BestRun object, which contains the
value of the objective that was maximized (by default, the sum of all metrics) and the
hyperparameters it used for that run:

print(best_run)

BestRun(run_id='1', objective=0.927741935483871,
hyperparameters={'num_train_epochs': 10, 'alpha': 0.12468168730193585,
'temperature': 7})

This value of α tells us that most of the training signal is coming from the knowledge
distillation term. Let’s update our training arguments with these values and run the
final training run:

for k,v in best_run.hyperparameters.items():
    setattr(student_training_args, k, v)

# Define a new repository to store our distilled model
distilled_ckpt = "distilbert-base-uncased-distilled-clinc"
student_training_args.output_dir = distilled_ckpt

# Create a new Trainer with optimal parameters
distil_trainer = DistillationTrainer(model_init=student_init,
    teacher_model=teacher_model, args=student_training_args,
    train_dataset=clinc_enc['train'], eval_dataset=clinc_enc['validation'],
    compute_metrics=compute_metrics, tokenizer=student_tokenizer)

distil_trainer.train();
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Epoch Training Loss Validation Loss Accuracy

1 0.9031 0.574540 0.736452

2 0.4481 0.285621 0.874839

3 0.2528 0.179766 0.918710

4 0.1760 0.139828 0.929355

5 0.1416 0.121053 0.934839

6 0.1243 0.111640 0.934839

7 0.1133 0.106174 0.937742

8 0.1075 0.103526 0.938710

9 0.1039 0.101432 0.938065

10 0.1018 0.100493 0.939355

Remarkably, we’ve been able to train the student to match the accuracy of the teacher,
despite it having almost half the number of parameters! Let’s push the model to the
Hub for future use:

distil_trainer.push_to_hub("Training complete")

Benchmarking Our Distilled Model
Now that we have an accurate student, let’s create a pipeline and redo our benchmark
to see how we perform on the test set:

distilled_ckpt = "transformersbook/distilbert-base-uncased-distilled-clinc"
pipe = pipeline("text-classification", model=distilled_ckpt)
optim_type = "Distillation"
pb = PerformanceBenchmark(pipe, clinc["test"], optim_type=optim_type)
perf_metrics.update(pb.run_benchmark())

Model size (MB) - 255.89
Average latency (ms) - 25.96 +\- 1.63
Accuracy on test set - 0.868

To put these results in context, let’s also visualize them with our plot_metrics()
function:

plot_metrics(perf_metrics, optim_type)
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As expected, the model size and latency remain essentially unchanged compared to
the DistilBERT benchmark, but the accuracy has improved and even surpassed the
performance of the teacher! One way to interpret this surprising result is that the
teacher has likely not been fine-tuned as systematically as the student. This is great,
but we can actually compress our distilled model even further using a technique
known as quantization. That’s the topic of the next section.

Making Models Faster with Quantization
We’ve now seen that with knowledge distillation we can reduce the computational
and memory cost of running inference by transferring the information from a
teacher into a smaller student. Quantization takes a different approach; instead of
reducing the number of computations, it makes them much more efficient by repre‐
senting the weights and activations with low-precision data types like 8-bit integer
(INT8) instead of the usual 32-bit floating point (FP32). Reducing the number of bits
means the resulting model requires less memory storage, and operations like matrix
multiplication can be performed much faster with integer arithmetic. Remarkably,
these performance gains can be realized with little to no loss in accuracy!
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A Primer on Floating-Point and Fixed-Point Numbers
Most transformers today are pretrained and fine-tuned with floating-point numbers
(usually FP32 or a mix of FP16 and FP32), since they provide the precision needed to
accommodate the very different ranges of weights, activations, and gradients. A
floating-point number like FP32 represents a sequence of 32 bits that are grouped in
terms of a sign, exponent, and significand. The sign determines whether the number is
positive or negative, while the significand corresponds to the number of significant
digits, which are scaled using the exponent in some fixed base (usually 2 for binary or
10 for decimal).

For example, the number 137.035 can be expressed as a decimal floating-point num‐
ber through the following arithmetic:

137 . 035 = − 1 0 × 1 . 37035 × 102

where the 1.37035 is the significand and 2 is the exponent of the base 10. Through the
exponent we can represent a wide range of real numbers, and the decimal or binary
point can be placed anywhere relative to the significant digits (hence the name
“floating-point”).

However, once a model is trained, we only need the forward pass to run inference, so
we can reduce the precision of the data types without impacting the accuracy too
much. For neural networks it is common to use a fixed-point format for the low-
precision data types, where real numbers are represented as B-bit integers that are
scaled by a common factor for all variables of the same type. For example, 137.035
can be represented as the integer 137,035 that is scaled by 1/1,000. We can control the
range and precision of a fixed-point number by adjusting the scaling factor.

The basic idea behind quantization is that we can “discretize” the floating-point val‐
ues f in each tensor by mapping their range [ f max, f min] into a smaller one
[qmax, qmin] of fixed-point numbers q, and linearly distributing all values in between.
Mathematically, this mapping is described by the following equation:

f =
f max − f min
qmax − qmin

q − Z = S q − Z

where the scale factor S is a positive floating-point number and the constant Z has the
same type as q and is called the zero point because it corresponds to the quantized
value of the floating-point value f = 0. Note that the map needs to be affine so that we
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13 An affine map is just a fancy name for the y = Ax + b map that you’re familiar with in the linear layers of a
neural network.

get back floating-point numbers when we dequantize the fixed-point ones.13 An illus‐
tration of the conversion is shown in Figure 8-6.

Figure 8-6. Quantizing floating-point numbers as unsigned 8-bit integers (courtesy of
Manas Sahni)

Now, one of the main reasons why transformers (and deep neural networks more
generally) are prime candidates for quantization is that the weights and activations
tend to take values in relatively small ranges. This means we don’t have to squeeze the
whole range of possible FP32 numbers into, say, the 28 = 256 numbers represented by
INT8. To see this, let’s pick out one of the attention weight matrices from our distilled
model and plot the frequency distribution of the values:

import matplotlib.pyplot as plt

state_dict = pipe.model.state_dict()
weights = state_dict["distilbert.transformer.layer.0.attention.out_lin.weight"]
plt.hist(weights.flatten().numpy(), bins=250, range=(-0.3,0.3), edgecolor="C0")
plt.show()
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As we can see, the values of the weights are distributed in the small range [−0 . 1, 0 . 1]
around zero. Now, suppose we want to quantize this tensor as a signed 8-bit integer.
In that case, the range of possible values for our integers is [qmax, qmin] = [−128, 127].
The zero point coincides with the zero of FP32 and the scale factor is calculated
according to the previous equation:

zero_point = 0
scale = (weights.max() - weights.min()) / (127 - (-128))

To obtain the quantized tensor, we just need to invert the mapping q = f /S + Z,
clamp the values, round them to the nearest integer, and represent the result in the
torch.int8 data type using the Tensor.char() function:

(weights / scale + zero_point).clamp(-128, 127).round().char()

tensor([[ -5,  -8,   0,  ...,  -6,  -4,   8],
        [  8,   3,   1,  ...,  -4,   7,   0],
        [ -9,  -6,   5,  ...,   1,   5,  -3],
        ...,
        [  6,   0,  12,  ...,   0,   6,  -1],
        [  0,  -2, -12,  ...,  12,  -7, -13],
        [-13,  -1, -10,  ...,   8,   2,  -2]], dtype=torch.int8)

Great, we’ve just quantized our first tensor! In PyTorch we can simplify the conver‐
sion by using the quantize_per_tensor() function together with a quantized data
type, torch.qint, that is optimized for integer arithmetic operations:

from torch import quantize_per_tensor

dtype = torch.qint8
quantized_weights = quantize_per_tensor(weights, scale, zero_point, dtype)
quantized_weights.int_repr()

tensor([[ -5,  -8,   0,  ...,  -6,  -4,   8],
        [  8,   3,   1,  ...,  -4,   7,   0],
        [ -9,  -6,   5,  ...,   1,   5,  -3],
        ...,
        [  6,   0,  12,  ...,   0,   6,  -1],
        [  0,  -2, -12,  ...,  12,  -7, -13],
        [-13,  -1, -10,  ...,   8,   2,  -2]], dtype=torch.int8)

The plot in Figure 8-7 shows very clearly the discretization that’s induced by only
mapping some of the weight values precisely and rounding the rest.
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Figure 8-7. Effect of quantization on a transformer’s weights

To round out our little analysis, let’s compare how long it takes to compute the multi‐
plication of two weight tensors with FP32 and INT8 values. For the FP32 tensors, we
can multiply them using PyTorch’s nifty @ operator:

%%timeit
weights @ weights

393 µs ± 3.84 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

For the quantized tensors we need the QFunctional wrapper class so that we can per‐
form operations with the special torch.qint8 data type:

from torch.nn.quantized import QFunctional

q_fn = QFunctional()

This class supports various elementary operations, like addition, and in our case we
can time the multiplication of our quantized tensors as follows:

%%timeit
q_fn.mul(quantized_weights, quantized_weights)

23.3 µs ± 298 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)

Compared to our FP32 computation, using the INT8 tensors is almost 100 times
faster! Even larger gains can be obtained by using dedicated backends for running
quantized operators efficiently. As of this book’s writing, PyTorch supports:

• x86 CPUs with AVX2 support or higher
• ARM CPUs (typically found in mobile/embedded devices)

234 | Chapter 8: Making Transformers Efficient in Production



Since INT8 numbers have four times fewer bits than FP32 numbers, quantization also
reduces the memory storage requirements by up to a factor of four. In our simple
example we can verify this by comparing the underlying storage size of our weight
tensor and its quantized cousin by using the Tensor.storage() function and the get
sizeof() function from Python’s sys module:

import sys

sys.getsizeof(weights.storage()) / sys.getsizeof(quantized_weights.storage())

3.999633833760527

For a full-scale transformer, the actual compression rate depends on which layers are
quantized (as we’ll see in the next section it is only the linear layers that typically get
quantized).

So what’s the catch with quantization? Changing the precision for all computations in
our model introduces small disturbances at each point in the model’s computational
graph, which can compound and affect the model’s performance. There are several
ways to quantize a model, which all have pros and cons. For deep neural networks,
there are typically three main approaches to quantization:

Dynamic quantization
When using dynamic quantization nothing is changed during training and the
adaptations are only performed during inference. Like with all the quantization
methods we will discuss, the weights of the model are converted to INT8 ahead
of inference time. In addition to the weights, the model’s activations are also
quantized. This approach is dynamic because the quantization happens on the fly.
This means that all the matrix multiplications can be calculated with highly opti‐
mized INT8 functions. Of all the quantization methods discussed here, dynamic
quantization is the simplest one. However, with dynamic quantization the activa‐
tions are written and read to memory in floating-point format. This conversion
between integer and floating point can be a performance bottleneck.

Static quantization
Instead of computing the quantization of the activations on the fly, we can avoid
the conversion to floating point by precomputing the quantization scheme. Static
quantization achieves this by observing the activation patterns on a representa‐
tive sample of the data ahead of inference time. The ideal quantization scheme is
calculated and then saved. This enables us to skip the conversion between INT8
and FP32 values and speeds up the computations. However, it requires access to a
good data sample and introduces an additional step in the pipeline, since we now
need to train and determine the quantization scheme before we can perform
inference. There is also one aspect that static quantization does not address: the
discrepancy between the precision during training and inference, which leads to
a performance drop in the model’s metrics (e.g., accuracy).
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Quantization-aware training
The effect of quantization can be effectively simulated during training by “fake”
quantization of the FP32 values. Instead of using INT8 values during training,
the FP32 values are rounded to mimic the effect of quantization. This is done
during both the forward and the backward pass and improves performance in
terms of model metrics over static and dynamic quantization.

The main bottleneck for running inference with transformers is the compute and
memory bandwidth associated with the enormous numbers of weights in these mod‐
els. For this reason, dynamic quantization is currently the best approach for
transformer-based models in NLP. In smaller computer vision models the limiting
factor is the memory bandwidth of the activations, which is why static quantization is
generally used (or quantization-aware training in cases where the performance drops
are too significant).

Implementing dynamic quantization in PyTorch is quite simple and can be done with
a single line of code:

from torch.quantization import quantize_dynamic

model_ckpt = "transformersbook/distilbert-base-uncased-distilled-clinc"
tokenizer = AutoTokenizer.from_pretrained(model_ckpt)
model = (AutoModelForSequenceClassification
         .from_pretrained(model_ckpt).to("cpu"))

model_quantized = quantize_dynamic(model, {nn.Linear}, dtype=torch.qint8)

Here we pass to quantize_dynamic() the full-precision model and specify the set of
PyTorch layer classes in that model that we want to quantize. The dtype argument
specifies the target precision and can be fp16 or qint8. A good practice is to pick the
lowest precision that you can tolerate with respect to your evaluation metrics. In this
chapter we’ll use INT8, which as we’ll soon see has little impact on our model’s
accuracy.

Benchmarking Our Quantized Model
With our model now quantized, let’s pass it through the benchmark and visualize the
results:

pipe = pipeline("text-classification", model=model_quantized,
                tokenizer=tokenizer)
optim_type = "Distillation + quantization"
pb = PerformanceBenchmark(pipe, clinc["test"], optim_type=optim_type)
perf_metrics.update(pb.run_benchmark())

Model size (MB) - 132.40
Average latency (ms) - 12.54 +\- 0.73
Accuracy on test set - 0.876
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14 There is a separate standard called ONNX-ML that is designed for traditional machine learning models like
random forests and frameworks like Scikit-learn.

plot_metrics(perf_metrics, optim_type)

Nice, the quantized model is almost half the size of our distilled one and has even
gained a slight accuracy boost! Let’s see if we can push our optimization to the limit
with a powerful framework called the ONNX Runtime.

Optimizing Inference with ONNX and the ONNX Runtime
ONNX is an open standard that defines a common set of operators and a common
file format to represent deep learning models in a wide variety of frameworks, includ‐
ing PyTorch and TensorFlow.14 When a model is exported to the ONNX format, these
operators are used to construct a computational graph (often called an intermediate
representation) that represents the flow of data through the neural network. An exam‐
ple of such a graph for BERT-base is shown in Figure 8-8, where each node receives
some input, applies an operation like Add or Squeeze, and then feeds the output to the
next set of nodes.
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15 Other popular accelerators include NVIDIA’s TensorRT and Apache TVM.
16 A fused operation involves merging one operator (usually an activation function) into another so that they

can be executed together. For example, suppose we want to apply an activation f to a matrix product A × B.
Normally the result of the product needs to be written back to the GPU memory before the activation is com‐
puted. Operator fusion allows as to compute f A × B  in a single step. Constant folding refers to the process
of evaluating constant expressions at compile time instead of runtime.

Figure 8-8. A section of the ONNX graph for BERT-base, visualized in Netron

By exposing a graph with standardized operators and data types, ONNX makes it
easy to switch between frameworks. For example, a model trained in PyTorch can be
exported to ONNX format and then imported in TensorFlow (and vice versa).

Where ONNX really shines is when it is coupled with a dedicated accelerator like
ONNX Runtime, or ORT for short.15 ORT provides tools to optimize the ONNX
graph through techniques like operator fusion and constant folding,16 and defines an
interface to execution providers that allow you to run the model on different types of
hardware. This is a powerful abstraction. Figure 8-9 shows the high-level architecture
of the ONNX and ORT ecosystem.
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Figure 8-9. Architecture of the ONNX and ONNX Runtime ecosystem (courtesy of the
ONNX Runtime team)

To see ORT in action, the first thing we need to do is convert our distilled model into
the ONNX format. The  Transformers library has a built-in function called
convert_graph_to_onnx.convert() that simplifies the process by taking the follow‐
ing steps:

1. Initialize the model as a Pipeline.
2. Run placeholder inputs through the pipeline so that ONNX can record the com‐

putational graph.
3. Define dynamic axes to handle dynamic sequence lengths.
4. Save the graph with network parameters.

To use this function, we first need to set some OpenMP environment variables for
ONNX:

import os
from psutil import cpu_count

os.environ["OMP_NUM_THREADS"] = f"{cpu_count()}"
os.environ["OMP_WAIT_POLICY"] = "ACTIVE"

OpenMP is an API designed for developing highly parallelized applications. The
OMP_NUM_THREADS environment variable sets the number of threads to use for parallel
computations in the ONNX Runtime, while OMP_WAIT_POLICY=ACTIVE specifies that
waiting threads should be active (i.e., using CPU processor cycles).

Next, let’s convert our distilled model to the ONNX format. Here we need to specify
the argument pipeline_name="text-classification" since convert() wraps the
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model in a  Transformers pipeline() function during the conversion. In addition
to the model_ckpt, we also pass the tokenizer to initialize the pipeline:

from transformers.convert_graph_to_onnx import convert

model_ckpt = "transformersbook/distilbert-base-uncased-distilled-clinc"
onnx_model_path = Path("onnx/model.onnx")
convert(framework="pt", model=model_ckpt, tokenizer=tokenizer,
        output=onnx_model_path, opset=12, pipeline_name="text-classification")

ONNX uses operator sets to group together immutable operator specifications, so
opset=12 corresponds to a specific version of the ONNX library.

Now that we have our model saved, we need to create an InferenceSession instance
to feed inputs to the model:

from onnxruntime import (GraphOptimizationLevel, InferenceSession,
                         SessionOptions)

def create_model_for_provider(model_path, provider="CPUExecutionProvider"):
    options = SessionOptions()
    options.intra_op_num_threads = 1
    options.graph_optimization_level = GraphOptimizationLevel.ORT_ENABLE_ALL
    session = InferenceSession(str(model_path), options, providers=[provider])
    session.disable_fallback()
    return session

onnx_model = create_model_for_provider(onnx_model_path)

Now when we call onnx_model.run(), we can get the class logits from the ONNX
model. Let’s test this out with an example from the test set. Since the output from
convert() tells us that ONNX expects just the input_ids and attention_mask as
inputs, we need to drop the label column from our sample:

inputs = clinc_enc["test"][:1]
del inputs["labels"]
logits_onnx = onnx_model.run(None, inputs)[0]
logits_onnx.shape

(1, 151)

Once we have the logits, we can easily get the predicted label by taking the argmax:

np.argmax(logits_onnx)

61

which indeed agrees with the ground truth label:

clinc_enc["test"][0]["labels"]

61

The ONNX model is not compatible with the text-classification pipeline, so we’ll
create our own class that mimics the core behavior:
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from scipy.special import softmax

class OnnxPipeline:
    def __init__(self, model, tokenizer):
        self.model = model
        self.tokenizer = tokenizer

    def __call__(self, query):
        model_inputs = self.tokenizer(query, return_tensors="pt")
        inputs_onnx = {k: v.cpu().detach().numpy()
                       for k, v in model_inputs.items()}
        logits = self.model.run(None, inputs_onnx)[0][0, :]
        probs = softmax(logits)
        pred_idx = np.argmax(probs).item()
        return [{"label": intents.int2str(pred_idx), "score": probs[pred_idx]}]

We can then test this on our simple query to see if we recover the car_rental intent:

pipe = OnnxPipeline(onnx_model, tokenizer)
pipe(query)

[{'label': 'car_rental', 'score': 0.7848334}]

Great, our pipeline works as expected. The next step is to create a performance
benchmark for ONNX models. Here we can build on the work we did with the
PerformanceBenchmark class by simply overriding the compute_size() method and
leaving the compute_accuracy() and time_pipeline() methods intact. The reason
we need to override the compute_size() method is that we cannot rely on the
state_dict and torch.save() to measure a model’s size, since onnx_model is techni‐
cally an ONNX InferenceSession object that doesn’t have access to the attributes of
PyTorch’s nn.Module. In any case, the resulting logic is simple and can be imple‐
mented as follows:

class OnnxPerformanceBenchmark(PerformanceBenchmark):
    def __init__(self, *args, model_path, **kwargs):
        super().__init__(*args, **kwargs)
        self.model_path = model_path

    def compute_size(self):
        size_mb = Path(self.model_path).stat().st_size / (1024 * 1024)
        print(f"Model size (MB) - {size_mb:.2f}")
        return {"size_mb": size_mb}

With our new benchmark, let’s see how our distilled model performs when converted
to ONNX format:

optim_type = "Distillation + ORT"
pb = OnnxPerformanceBenchmark(pipe, clinc["test"], optim_type,
                              model_path="onnx/model.onnx")
perf_metrics.update(pb.run_benchmark())
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Model size (MB) - 255.88
Average latency (ms) - 21.02 +\- 0.55
Accuracy on test set - 0.868

plot_metrics(perf_metrics, optim_type)

Remarkably, converting to the ONNX format and using the ONNX Runtime has
given our distilled model (i.e. the “Distillation” circle in the plot) a boost in latency!
Let’s see if we can squeeze out a bit more performance by adding quantization to the
mix.

Similar to PyTorch, ORT offers three ways to quantize a model: dynamic, static, and
quantization-aware training. As we did with PyTorch, we’ll apply dynamic quantiza‐
tion to our distilled model. In ORT, the quantization is applied through the
quantize_dynamic() function, which requires a path to the ONNX model to quan‐
tize, a target path to save the quantized model to, and the data type to reduce the
weights to:

from onnxruntime.quantization import quantize_dynamic, QuantType

model_input = "onnx/model.onnx"
model_output = "onnx/model.quant.onnx"
quantize_dynamic(model_input, model_output, weight_type=QuantType.QInt8)

Now that the model is quantized, let’s run it through our benchmark:

onnx_quantized_model = create_model_for_provider(model_output)
pipe = OnnxPipeline(onnx_quantized_model, tokenizer)
optim_type = "Distillation + ORT (quantized)"
pb = OnnxPerformanceBenchmark(pipe, clinc["test"], optim_type,
                              model_path=model_output)
perf_metrics.update(pb.run_benchmark())
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Model size (MB) - 64.20
Average latency (ms) - 9.24 +\- 0.29
Accuracy on test set - 0.877

plot_metrics(perf_metrics, optim_type)

ORT quantization has reduced the model size and latency by around 30% compared
to the model obtained from PyTorch quantization (the distillation + quantization
blob). One reason for this is that PyTorch only optimizes the nn.Linear modules,
while ONNX quantizes the embedding layer as well. From the plot we can also see
that applying ORT quantization to our distilled model has provided an almost three-
fold gain compared to our BERT baseline!

This concludes our analysis of techniques to speed up transformers for inference. We
have seen that methods such as quantization reduce the model size by reducing the
precision of the representation. Another strategy to reduce the size is to remove some
weights altogether. This technique is called weight pruning, and it’s the focus of the
next section.

Making Models Sparser with Weight Pruning
So far we’ve seen that knowledge distillation and weight quantization are quite effec‐
tive at producing faster models for inference, but in some cases you might also have
strong constraints on the memory footprint of your model. For example, if our prod‐
uct manager suddenly decides that our text assistant needs to be deployed on a
mobile device, then we’ll need our intent classifier to take up as little storage space as
possible. To round out our survey of compression methods, let’s take a look at how
we can shrink the number of parameters in our model by identifying and removing
the least important weights in the network.
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Sparsity in Deep Neural Networks
As shown in Figure 8-10, the main idea behind pruning is to gradually remove weight
connections (and potentially neurons) during training such that the model becomes
progressively sparser. The resulting pruned model has a smaller number of nonzero
parameters, which can then be stored in a compact sparse matrix format. Pruning can
be also combined with quantization to obtain further compression.

Figure 8-10. Weights and neurons before and after pruning (courtesy of Song Han)

Weight Pruning Methods
Mathematically, the way most weight pruning methods work is to calculate a matrix �
of importance scores and then select the top k percent of weights by importance:

Topk � i j =
1 if Si j in top k %

0 otherwise

In effect, k acts as a new hyperparameter to control the amount of sparsity in the
model—that is, the proportion of weights that are zero-valued. Lower values of k cor‐
respond to sparser matrices. From these scores we can then define a mask matrix �
that masks the weights Wi j during the forward pass with some input xi and effectively
creates a sparse network of activations ai:

ai = ∑
k

WikMikxk
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17 B. Hassibi and D. Stork, “Second Order Derivatives for Network Pruning: Optimal Brain Surgeon,” Proceed‐
ings of the 5th International Conference on Neural Information Processing Systems (November 1992): 164–171,
https://papers.nips.cc/paper/1992/hash/303ed4c69846ab36c2904d3ba8573050-Abstract.html.

18 S. Han et al., “Learning Both Weights and Connections for Efficient Neural Networks”, (2015).
19 M. Zhu and S. Gupta, “To Prune, or Not to Prune: Exploring the Efficacy of Pruning for Model Compression”,

(2017).

As discussed in the tongue-in-cheek “Optimal Brain Surgeon” paper,17 at the heart of
each pruning method are a set of questions that need to be considered:

• Which weights should be eliminated?
• How should the remaining weights be adjusted for best performance?
• How can such network pruning be done in a computationally efficient way?

The answers to these questions inform how the score matrix � is computed, so let’s
begin by looking at one of the earliest and most popular pruning methods: magnitude
pruning.

Magnitude pruning
As the name suggests, magnitude pruning calculates the scores according to the mag‐
nitude of the weights � = ∣ Wi j ∣ 1 ≤ j, j ≤ n

 and then derives the masks from
� = Topk � . In the literature it is common to apply magnitude pruning in an itera‐
tive fashion by first training the model to learn which connections are important and
pruning the weights of least importance.18 The sparse model is then retrained and the
process repeated until the desired sparsity is reached.

One drawback with this approach is that it is computationally demanding: at every
step of pruning we need to train the model to convergence. For this reason it is gener‐
ally better to gradually increase the initial sparsity si (which is usually zero) to a final
value s f  after some number of steps N:19

st = s f + si − s f 1 −
t − t0
NΔt

3
for t ∈ t0, t0 + Δt, ..., t0 + NΔt

Here the idea is to update the binary masks � every Δt steps to allow masked weights
to reactivate during training and recover from any potential loss in accuracy that is
induced by the pruning process. As shown in Figure 8-11, the cubic factor implies
that the rate of weight pruning is highest in the early phases (when the number of
redundant weights is large) and gradually tapers off.
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20 V. Sanh, T. Wolf, and A.M. Rush, “Movement Pruning: Adaptive Sparsity by Fine-Tuning”, (2020).
21 There is also a “soft” version of movement pruning where instead of picking the top k% of weights, one uses a

global threshold τ to define the binary mask: � = � > τ .

Figure 8-11. The cubic sparsity scheduler used for pruning

One problem with magnitude pruning is that it is really designed for pure supervised
learning, where the importance of each weight is directly related to the task at hand.
By contrast, in transfer learning the importance of the weights is primarily deter‐
mined by the pretraining phase, so magnitude pruning can remove connections that
are important for the fine-tuning task. Recently, an adaptive approach called move‐
ment pruning has been proposed by Hugging Face researchers—let’s take a look.20

Movement pruning
The basic idea behind movement pruning is to gradually remove weights during fine-
tuning such that the model becomes progressively sparser. The key novelty is that
both the weights and the scores are learned during fine-tuning. So, instead of being
derived directly from the weights (like with magnitude pruning), the scores in move‐
ment pruning are arbitrary and are learned through gradient descent like any other
neural network parameter. This implies that in the backward pass, we also track the
gradient of the loss L with respect to the scores Si j.

Once the scores are learned, it is then straightforward to generate the binary mask
using � = Topk � .21

The intuition behind movement pruning is that the weights that are “moving” the
most from zero are the most important ones to keep. In other words, the positive
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weights increase during fine-tuning (and vice versa for the negative weights), which is
equivalent to saying that the scores increase as the weights move away from zero. As
shown in Figure 8-12, this behavior differs from magnitude pruning, which selects as
the most important weights those that are furthest from zero.

Figure 8-12. Comparison of weights removed during magnitude pruning (left) and
movement pruning (right)

These differences between the two pruning methods are also evident in the distribu‐
tion of the remaining weights. As shown in Figure 8-13, magnitude pruning produces
two clusters of weights, while movement pruning produces a smoother distribution.

As of this book’s writing,  Transformers does not support pruning methods out of
the box. Fortunately, there is a nifty library called Neural Networks Block Movement
Pruning that implements many of these ideas, and we recommend checking it out if
memory constraints are a concern.
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Figure 8-13. Distribution of remaining weights for magnitude pruning (MaP) and move‐
ment pruning (MvP)

Conclusion
We’ve seen that optimizing transformers for deployment in production environments
involves compression along two dimensions: latency and memory footprint. Starting
from a fine-tuned model, we applied distillation, quantization, and optimizations
through ORT to significantly reduce both of these. In particular, we found that quan‐
tization and conversion in ORT gave the largest gains with minimal effort.

Although pruning is an effective strategy for reducing the storage size of transformer
models, current hardware is not optimized for sparse matrix operations, which limits
the usefulness of this technique. However, this is an active area of research, and by the
time this book hits the shelves many of these limitations may have been resolved.

So where to from here? All of the techniques in this chapter can be adapted to other
tasks, such as question answering, named entity recognition, or language modeling. If
you find yourself struggling to meet the latency requirements or your model is eating
up all your compute budget, we suggest giving one of them a try.

In the next chapter, we’ll switch gears away from performance optimization and
explore every data scientist’s worst nightmare: dealing with few to no labels.
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CHAPTER 9

Dealing with Few to No Labels

There is one question so deeply ingrained into every data scientist’s mind that it’s usu‐
ally the first thing they ask at the start of a new project: is there any labeled data?
More often than not, the answer is “no” or “a little bit,” followed by an expectation
from the client that your team’s fancy machine learning models should still perform
well. Since training models on very small datasets does not typically yield good
results, one obvious solution is to annotate more data. However, this takes time and
can be very expensive, especially if each annotation requires domain expertise to
validate.

Fortunately, there are several methods that are well suited for dealing with few to no
labels! You may already be familiar with some of them, such as zero-shot or few-shot
learning, as witnessed by GPT-3’s impressive ability to perform a diverse range of
tasks with just a few dozen examples.

In general, the best-performing method will depend on the task, the amount of avail‐
able data, and what fraction of that data is labeled. The decision tree shown in
Figure 9-1 can help guide us through the process of picking the most appropriate
method.
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1 Q. Xie et al., “Unsupervised Data Augmentation for Consistency Training”, (2019); S. Mukherjee and A.H.
Awadallah, “Uncertainty-Aware Self-Training for Few-Shot Text Classification”, (2020).

Figure 9-1. Several techniques that can be used to improve model performance in the
absence of large amounts of labeled data

Let’s walk through this decision tree step-by-step:

1. Do you have labeled data?
Even a handful of labeled samples can make a difference with regard to which
method works best. If you have no labeled data at all, you can start with the zero-
shot learning approach, which often sets a strong baseline to work from.

2. How many labels?
If labeled data is available, the deciding factor is how much. If you have a lot of
training data available you can use the standard fine-tuning approach discussed
in Chapter 2.

3. Do you have unlabeled data?
If you only have a handful of labeled samples it can help immensely if you have
access to large amounts of unlabeled data. If you have access to unlabeled data
you can either use it to fine-tune the language model on the domain before train‐
ing a classifier, or you can use more sophisticated methods such as unsupervised
data augmentation (UDA) or uncertainty-aware self-training (UST).1 If you don’t
have any unlabeled data available, you don’t have the option of annotating more
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data. In this case you can use few-shot learning or use the embeddings from a
pretrained language model to perform lookups with a nearest neighbor search.

In this chapter we’ll work our way through this decision tree by tackling a common
problem facing many support teams that use issue trackers like Jira or GitHub to
assist their users: tagging issues with metadata based on the issue’s description. These
tags might define the issue type, the product causing the problem, or which team is
responsible for handling the reported issue. Automating this process can have a big
impact on productivity and enables the support teams to focus on helping their users.
As a running example, we’ll use the GitHub issues associated with a popular open
source project:  Transformers! Let’s now take a look at what information is con‐
tained in these issues, how to frame the task, and how to get the data.

The methods presented in this chapter work well for text classifica‐
tion, but other techniques such as data augmentation may be nec‐
essary for tackling more complex tasks like named entity
recognition, question answering, or summarization.

Building a GitHub Issues Tagger
If you navigate to the Issues tab of the  Transformers repository, you’ll find issues
like the one shown in Figure 9-2, which contains a title, a description, and a set of
tags or labels that characterize the issue. This suggests a natural way to frame the
supervised learning task: given a title and description of an issue, predict one or more
labels. Since each issue can be assigned a variable number of labels, this means we are
dealing with a multilabel text classification problem. This is usually more challenging
than the multiclass problem that we encountered in Chapter 2, where each tweet was
assigned to only one emotion.
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Figure 9-2. A typical GitHub issue on the  Transformers repository

Now that we’ve seen what the GitHub issues look like, let’s see how we can download
them to create our dataset.

Getting the Data
To grab all the repository’s issues, we’ll use the GitHub REST API to poll the Issues
endpoint. This endpoint returns a list of JSON objects, with each containing a large
number of fields about the issue at hand, including its state (open or closed), who
opened the issue, as well as the title, body, and labels we saw in Figure 9-2.

Since it takes a while to fetch all the issues, we’ve included a github-issues-
transformers.jsonl file in this book’s GitHub repository, along with a fetch_issues()
function that you can use to download them yourself.
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The GitHub REST API treats pull requests as issues, so our dataset
contains a mix of both. To keep things simple, we’ll develop our
classifier for both types of issue, although in practice you might
consider building two separate classifiers to have more fine-grained
control over the model’s performance.

Now that we know how to grab the data, let’s take a look at cleaning it up.

Preparing the Data
Once we’ve downloaded all the issues, we can load them using Pandas:

import pandas as pd

dataset_url = "https://git.io/nlp-with-transformers"
df_issues = pd.read_json(dataset_url, lines=True)
print(f"DataFrame shape: {df_issues.shape}")

DataFrame shape: (9930, 26)

There are almost 10,000 issues in our dataset, and by looking at a single row we can
see that the information retrieved from the GitHub API contains many fields such as
URLs, IDs, dates, users, title, body, as well as labels:

cols = ["url", "id", "title", "user", "labels", "state", "created_at", "body"]
df_issues.loc[2, cols].to_frame()

2

url https://api.github.com/repos/huggingface/trans...

id 849529761

title [DeepSpeed] ZeRO stage 3 integration: getting ...

user {'login’: ’stas00', ‘id’: 10676103, ‘node_id’:...

labels [{'id’: 2659267025, ‘node_id’: ‘MDU6TGFiZWwyNj...

state open

created_at 2021-04-02 23:40:42

body **[This is not yet alive, preparing for the re...

The labels column is the thing that we’re interested in, and each row contains a list
of JSON objects with metadata about each label:

[
   {
      "id":2659267025,
      "node_id":"MDU6TGFiZWwyNjU5MjY3MDI1",
      "url":"https://api.github.com/repos/huggingface...",
      "name":"DeepSpeed",
      "color":"4D34F7",
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      "default":false,
      "description":""
   }
]

For our purposes, we’re only interested in the name field of each label object, so let’s
overwrite the labels column with just the label names:

df_issues["labels"] = (df_issues["labels"]
                       .apply(lambda x: [meta["name"] for meta in x]))
df_issues[["labels"]].head()

labels

0 []

1 []

2 [DeepSpeed]

3 []

4 []

Now each row in the labels column is a list of GitHub labels, so we can compute the
length of each row to find the number of labels per issue:

df_issues["labels"].apply(lambda x : len(x)).value_counts().to_frame().T

0 1 2 3 4 5

labels 6440 3057 305 100 25 3

This shows that the majority of issues have zero or one label, and much fewer have
more than one. Next let’s take a look at the top 10 most frequent labels in the dataset.
In Pandas we can do this by “exploding” the labels column so that each label in the
list becomes a row, and then simply counting the occurrences of each label:

df_counts = df_issues["labels"].explode().value_counts()
print(f"Number of labels: {len(df_counts)}")
# Display the top-8 label categories
df_counts.to_frame().head(8).T

Number of labels: 65

wontfix model
card

Core:
Tokenization

New
model

Core:
Modeling

Help
wanted

Good First
Issue

Usage

labels 2284 649 106 98 64 52 50 46

We can see that there are 65 unique labels in the dataset and that the classes are very
imbalanced, with wontfix and model card being the most common labels. To make
the classification problem more tractable, we’ll focus on building a tagger for a subset
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of the labels. For example, some labels, such as Good First Issue or Help Wanted,
are potentially very difficult to predict from the issue’s description, while others, such
as model card, could be classified with a simple rule that detects when a model card
is added on the Hugging Face Hub.

The following code filters the dataset for the subset of labels that we’ll work with,
along with a standardization of the names to make them easier to read:

label_map = {"Core: Tokenization": "tokenization",
             "New model": "new model",
             "Core: Modeling": "model training",
             "Usage": "usage",
             "Core: Pipeline": "pipeline",
             "TensorFlow": "tensorflow or tf",
             "PyTorch": "pytorch",
             "Examples": "examples",
             "Documentation": "documentation"}

def filter_labels(x):
    return [label_map[label] for label in x if label in label_map]

df_issues["labels"] = df_issues["labels"].apply(filter_labels)
all_labels = list(label_map.values())

Now let’s look at the distribution of the new labels:

df_counts = df_issues["labels"].explode().value_counts()
df_counts.to_frame().T

tokenization new
model

model
training

usage pipeline tensorflow
or tf

pytorch documentation examples

labels 106 98 64 46 42 41 37 28 24

Later in this chapter we’ll find it useful to treat the unlabeled issues as a separate
training split, so let’s create a new column that indicates whether the issue is unla‐
beled or not:

df_issues["split"] = "unlabeled"
mask = df_issues["labels"].apply(lambda x: len(x)) > 0
df_issues.loc[mask, "split"] = "labeled"
df_issues["split"].value_counts().to_frame()

split

unlabeled 9489

labeled 441
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Let’s now take a look at an example:

for column in ["title", "body", "labels"]:
    print(f"{column}: {df_issues[column].iloc[26][:500]}\n")

title: Add new CANINE model

body: #  New model addition

## Model description

Google recently proposed a new **C**haracter **A**rchitecture with **N**o
 tokenization **I**n **N**eural **E**ncoders architecture (CANINE). Not only
 the title is exciting:

Pipelined NLP systems have largely been superseded by end-to-end neural
 modeling, yet nearly all commonly-used models still require an explicit
 tokenization step. While recent tokenization approaches based on data-derived
 subword lexicons are less brittle than manually en

labels: ['new model']

In this example a new model architecture is proposed, so the new model tag makes
sense. We can also see that the title contains information that will be useful for our
classifier, so let’s concatenate it with the issue’s description in the body field:

df_issues["text"] = (df_issues
                     .apply(lambda x: x["title"] + "\n\n" + x["body"], axis=1))

Before we look at the rest of the data, let’s check for any duplicates in the data and
drop them with the drop_duplicates() method:

len_before = len(df_issues)
df_issues = df_issues.drop_duplicates(subset="text")
print(f"Removed {(len_before-len(df_issues))/len_before:.2%} duplicates.")

Removed 1.88% duplicates.

We can see that there were a few duplicate issues in our dataset, but they only repre‐
sented a small percentage. As we’ve done in other chapters, it’s also a good idea to
have a quick look at the number of words in our texts to see if we’ll lose much infor‐
mation when we truncate to each model’s context size:

import numpy as np
import matplotlib.pyplot as plt

(df_issues["text"].str.split().apply(len)
 .hist(bins=np.linspace(0, 500, 50), grid=False, edgecolor="C0"))
plt.title("Words per issue")
plt.xlabel("Number of words")
plt.ylabel("Number of issues")
plt.show()
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The distribution has the long tail characteristic of many text datasets. Most of the
texts are fairly short, but there are also issues with more than 500 words. It is com‐
mon to have some very long issues, especially when error messages and code snippets
are posted along with them. Given that most transformer models have a context size
of 512 tokens or larger, truncating a handful of long issues is not likely to affect the
overall performance. Now that we’ve explored and cleaned up our dataset, the final
thing to do is define our training and validation sets to benchmark our classifiers.
Let’s take a look at how to do this.

Creating Training Sets
Creating training and validation sets is a bit trickier for multlilabel problems because
there is no guaranteed balance for all labels. However, it can be approximated, and we
can use the Scikit-multilearn library, which is specifically set up for this purpose. The
first thing we need to do is transform our set of labels, like pytorch and tokeniza
tion, into a format that the model can process. Here we can use Scikit-learn’s Multi
Label Binarizer class, which takes a list of label names and creates a vector with
zeros for absent labels and ones for present labels. We can test this by fitting Multi
Label Binarizer on all_labels to learn the mapping from label name to ID as
follows:

from sklearn.preprocessing import MultiLabelBinarizer

mlb = MultiLabelBinarizer()
mlb.fit([all_labels])
mlb.transform([["tokenization", "new model"], ["pytorch"]])
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array([[0, 0, 0, 1, 0, 0, 0, 1, 0],
       [0, 0, 0, 0, 0, 1, 0, 0, 0]])

In this simple example we can see the first row has two ones corresponding to the
tokenization and new model labels, while the second row has just one hit with
pytorch.

To create the splits we can use the iterative_train_test_split() function from
Scikit-multilearn, which creates the train/test splits iteratively to achieve balanced
labels. We wrap it in a function that we can apply to DataFrames. Since the function
expects a two-dimensional feature matrix, we need to add a dimension to the possible
indices before making the split:

from skmultilearn.model_selection import iterative_train_test_split

def balanced_split(df, test_size=0.5):
    ind = np.expand_dims(np.arange(len(df)), axis=1)
    labels = mlb.transform(df["labels"])
    ind_train, _, ind_test, _ = iterative_train_test_split(ind, labels,
                                                           test_size)
    return df.iloc[ind_train[:, 0]], df.iloc[ind_test[:,0]]

Armed with the balanced_split() function, we can split the data into supervised
and unsupervised datasets, and then create balanced training, validation, and test sets
for the supervised part:

from sklearn.model_selection import train_test_split

df_clean = df_issues[["text", "labels", "split"]].reset_index(drop=True).copy()
df_unsup = df_clean.loc[df_clean["split"] == "unlabeled", ["text", "labels"]]
df_sup = df_clean.loc[df_clean["split"] == "labeled", ["text", "labels"]]

np.random.seed(0)
df_train, df_tmp = balanced_split(df_sup, test_size=0.5)
df_valid, df_test = balanced_split(df_tmp, test_size=0.5)

Finally, let’s create a DatasetDict with all the splits so that we can easily tokenize the
dataset and integrate with the Trainer. Here we’ll use the nifty from_pandas()
method to load each split directly from the corresponding Pandas DataFrame:

from datasets import Dataset, DatasetDict

ds = DatasetDict({
    "train": Dataset.from_pandas(df_train.reset_index(drop=True)),
    "valid": Dataset.from_pandas(df_valid.reset_index(drop=True)),
    "test": Dataset.from_pandas(df_test.reset_index(drop=True)),
    "unsup": Dataset.from_pandas(df_unsup.reset_index(drop=True))})

This looks good, so the last thing to do is to create some training slices so that we can
evaluate the performance of each classifier as a function of the training set size.
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Creating Training Slices
The dataset has the two characteristics that we’d like to investigate in this chapter:
sparse labeled data and multilabel classification. The training set consists of only 220
examples to train with, which is certainly a challenge even with transfer learning. To
drill down into how each method in this chapter performs with little labeled data,
we’ll also create slices of the training data with even fewer samples. We can then plot
the number of samples against the performance and investigate various regimes. We’ll
start with only eight samples per label and build up until the slice covers the full
training set using the iterative_train_test_split() function:

np.random.seed(0)
all_indices = np.expand_dims(list(range(len(ds["train"]))), axis=1)
indices_pool = all_indices
labels = mlb.transform(ds["train"]["labels"])
train_samples = [8, 16, 32, 64, 128]
train_slices, last_k = [], 0

for i, k in enumerate(train_samples):
    # Split off samples necessary to fill the gap to the next split size
    indices_pool, labels, new_slice, _ = iterative_train_test_split(
        indices_pool, labels, (k-last_k)/len(labels))
    last_k = k
    if i==0: train_slices.append(new_slice)
    else: train_slices.append(np.concatenate((train_slices[-1], new_slice)))

# Add full dataset as last slice
train_slices.append(all_indices), train_samples.append(len(ds["train"]))
train_slices = [np.squeeze(train_slice) for train_slice in train_slices]

Note that this iterative approach only approximately splits the samples to the desired
size, since it is not always possible to find a balanced split at a given split size:

print("Target split sizes:")
print(train_samples)
print("Actual split sizes:")
print([len(x) for x in train_slices])

Target split sizes:
[8, 16, 32, 64, 128, 223]
Actual split sizes:
[10, 19, 36, 68, 134, 223]

We’ll use the specified split sizes as the labels for the following plots. Great, we’ve
finally prepared our dataset into training splits—let’s next take a look at training a
strong baseline model!

Building a GitHub Issues Tagger | 259



Implementing a Naive Bayesline
Whenever you start a new NLP project, it’s always a good idea to implement a set of
strong baselines. There are two main reasons for this:

1. A baseline based on regular expressions, handcrafted rules, or a very simple
model might already work really well to solve the problem. In these cases, there is
no reason to bring out big guns like transformers, which are generally more com‐
plex to deploy and maintain in production environments.

2. The baselines provide quick checks as you explore more complex models. For
example, suppose you train BERT-large and get an accuracy of 80% on your vali‐
dation set. You might write it off as a hard dataset and call it a day. But what if
you knew that a simple classifier like logistic regression gets 95% accuracy? That
would raise your suspicions and prompt you to debug your model.

So let’s start our analysis by training a baseline model. For text classification, a great
baseline is a Naive Bayes classifier as it is very simple, quick to train, and fairly robust
to perturbations in the inputs. The Scikit-learn implementation of Naive Bayes does
not support multilabel classification out of the box, but fortunately we can again use
the Scikit-multilearn library to cast the problem as a one-versus-rest classification
task where we train L binary classifiers for L labels. First, let’s use a multilabel binar‐
izer to create a new label_ids column in our training sets. We can use the map()
function to take care of all the processing in one go:

def prepare_labels(batch):
    batch["label_ids"] = mlb.transform(batch["labels"])
    return batch

ds = ds.map(prepare_labels, batched=True)

To measure the performance of our classifiers, we’ll use the micro and macro
F1-scores, where the former tracks performance on the frequent labels and the latter
on all labels disregarding the frequency. Since we’ll be evaluating each model across
different-sized training splits, let’s create a defaultdict with a list to store the scores
per split:

from collections import defaultdict

macro_scores, micro_scores = defaultdict(list), defaultdict(list)

Now we’re finally ready to train our baseline! Here’s the code to train the model and
evaluate our classifier across increasing training set sizes:

from sklearn.naive_bayes import MultinomialNB
from sklearn.metrics import classification_report
from skmultilearn.problem_transform import BinaryRelevance
from sklearn.feature_extraction.text import CountVectorizer
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for train_slice in train_slices:
    # Get training slice and test data
    ds_train_sample = ds["train"].select(train_slice)
    y_train = np.array(ds_train_sample["label_ids"])
    y_test = np.array(ds["test"]["label_ids"])
    # Use a simple count vectorizer to encode our texts as token counts
    count_vect = CountVectorizer()
    X_train_counts = count_vect.fit_transform(ds_train_sample["text"])
    X_test_counts = count_vect.transform(ds["test"]["text"])
    # Create and train our model!
    classifier = BinaryRelevance(classifier=MultinomialNB())
    classifier.fit(X_train_counts, y_train)
    # Generate predictions and evaluate
    y_pred_test = classifier.predict(X_test_counts)
    clf_report = classification_report(
        y_test, y_pred_test, target_names=mlb.classes_, zero_division=0,
        output_dict=True)
    # Store metrics
    macro_scores["Naive Bayes"].append(clf_report["macro avg"]["f1-score"])
    micro_scores["Naive Bayes"].append(clf_report["micro avg"]["f1-score"])

There’s quite a lot going on in this block of code, so let’s unpack it. First, we get the
training slice and encode the labels. Then we use a count vectorizer to encode the
texts by simply creating a vector of the size of the vocabulary where each entry corre‐
sponds to the frequency with which a token appeared in the text. This is called a bag-
of-words approach, since all information on the order of the words is lost. Then we
train the classifier and use the predictions on the test set to get the micro and macro
F1-scores via the classification report.

With the following helper function we can plot the results of this experiment:

import matplotlib.pyplot as plt

def plot_metrics(micro_scores, macro_scores, sample_sizes, current_model):
    fig, (ax0, ax1) = plt.subplots(1, 2, figsize=(10, 4), sharey=True)

    for run in micro_scores.keys():
        if run == current_model:
            ax0.plot(sample_sizes, micro_scores[run], label=run, linewidth=2)
            ax1.plot(sample_sizes, macro_scores[run], label=run, linewidth=2)
        else:
            ax0.plot(sample_sizes, micro_scores[run], label=run,
                     linestyle="dashed")
            ax1.plot(sample_sizes, macro_scores[run], label=run,
                     linestyle="dashed")

    ax0.set_title("Micro F1 scores")
    ax1.set_title("Macro F1 scores")
    ax0.set_ylabel("Test set F1 score")
    ax0.legend(loc="lower right")
    for ax in [ax0, ax1]:
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        ax.set_xlabel("Number of training samples")
        ax.set_xscale("log")
        ax.set_xticks(sample_sizes)
        ax.set_xticklabels(sample_sizes)
        ax.minorticks_off()
    plt.tight_layout()
    plt.show()

plot_metrics(micro_scores, macro_scores, train_samples, "Naive Bayes")
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Note that we plot the number of samples on a logarithmic scale. From the figure we
can see that the micro and macro F1-scores both improve as we increase the number
of training samples. With so few samples to train on, the results are also slightly noisy
since each slice can have a different class distribution. Nevertheless, what’s important
here is the trend, so let’s now see how these results fare against transformer-based
approaches!

Working with No Labeled Data
The first technique that we’ll consider is zero-shot classification, which is suitable in
settings where you have no labeled data at all. This is surprisingly common in indus‐
try, and might occur because there is no historic data with labels or because acquiring
the labels for the data is difficult. We will cheat a bit in this section since we will still
use the test data to measure the performance, but we will not use any data to train the
model (otherwise the comparison to the following approaches would be difficult).

The goal of zero-shot classification is to make use of a pretrained model without any
additional fine-tuning on your task-specific corpus. To get a better idea of how this
could work, recall that language models like BERT are pretrained to predict masked
tokens in text on thousands of books and large Wikipedia dumps. To successfully
predict a missing token, the model needs to be aware of the topic in the context. We
can try to trick the model into classifying a document for us by providing a sentence
like:

“This section was about the topic [MASK].”

The model should then give a reasonable suggestion for the document’s topic, since
this is a natural text to occur in the dataset.2

Let’s illustrate this further with the following toy problem: suppose you have two chil‐
dren, and one of them likes movies with cars while the other enjoys movies with ani‐
mals better. Unfortunately, they have already seen all the ones you know, so you want
to build a function that tells you what topic a new movie is about. Naturally, you turn
to transformers for this task. The first thing to try is to load BERT-base in the fill-
mask pipeline, which uses the masked language model to predict the content of the
masked tokens:

from transformers import pipeline

pipe = pipeline("fill-mask", model="bert-base-uncased")
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Next, let’s construct a little movie description and add a prompt to it with a masked
word. The goal of the prompt is to guide the model to help us make a classification.
The fill-mask pipeline returns the most likely tokens to fill in the masked spot:

movie_desc = "The main characters of the movie madacascar \
are a lion, a zebra, a giraffe, and a hippo. "
prompt = "The movie is about [MASK]."

output = pipe(movie_desc + prompt)
for element in output:
    print(f"Token {element['token_str']}:\t{element['score']:.3f}%")

Token animals:  0.103%
Token lions:    0.066%
Token birds:    0.025%
Token love:     0.015%
Token hunting:  0.013%

Clearly, the model predicts only tokens that are related to animals. We can also turn
this around, and instead of getting the most likely tokens we can query the pipeline
for the probability of a few given tokens. For this task we might choose cars and
animals, so we can pass them to the pipeline as targets:

output = pipe(movie_desc + prompt, targets=["animals", "cars"])
for element in output:
    print(f"Token {element['token_str']}:\t{element['score']:.3f}%")

Token animals:  0.103%
Token cars:     0.001%

Unsurprisingly, the predicted probability for the token cars is much smaller than for
animals. Let’s see if this also works for a description that is closer to cars:

movie_desc = "In the movie transformers aliens \
can morph into a wide range of vehicles."

output = pipe(movie_desc + prompt, targets=["animals", "cars"])
for element in output:
    print(f"Token {element['token_str']}:\t{element['score']:.3f}%")

Token cars:     0.139%
Token animals:  0.006%

It does! This is only a simple example, and if we want to make sure it works well we
should test it thoroughly, but it illustrates the key idea of many approaches discussed
in this chapter: find a way to adapt a pretrained model for another task without train‐
ing it. In this case we set up a prompt with a mask in such a way that we can use a
masked language model directly for classification. Let’s see if we can do better by
adapting a model that has been fine-tuned on a task that’s closer to text classification:
natural language inference (NLI).
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Using the masked language model for classification is a nice trick, but we can do bet‐
ter still by using a model that has been trained on a task that is closer to classification.
There is a neat proxy task called text entailment that fits the bill. In text entailment,
the model needs to determine whether two text passages are likely to follow or con‐
tradict each other. Models are typically trained to detect entailments and contradic‐
tions with datasets such as Multi-Genre NLI Corpus (MNLI) or Cross-Lingual NLI
Corpus (XNLI).3

Each sample in these datasets is composed of three parts: a premise, a hypothesis, and
a label, which can be one of entailment, neutral, or contradiction. The entail
ment label is assigned when the hypothesis text is necessarily true under the premise.
The contradiction label is used when the hypothesis is necessarily false or inappro‐
priate under the premise. If neither of these cases applies, then the neutral label is
assigned. See Table 9-1 for examples of each.

Table 9-1. The three classes in the MLNI dataset

Premise Hypothesis Label
His favourite color is blue. He is into heavy metal music. neutral

She finds the joke hilarious. She thinks the joke is not funny at all. contradiction

The house was recently built. The house is new. entailment

Now, it turns out that we can hijack a model trained on the MNLI dataset to build a
classifier without needing any labels at all! The key idea is to treat the text we wish to
classify as the premise, and then formulate the hypothesis as:

“This example is about {label}.”

where we insert the class name for the label. The entailment score then tells us how
likely that premise is to be about that topic, and we can run this for any number of
classes sequentially. The downside of this approach is that we need to execute a for‐
ward pass for each class, which makes it less efficient than a standard classifier.
Another slightly tricky aspect is that the choice of label names can have a large impact
on the accuracy, and choosing labels with semantic meaning is generally the best
approach. For example, if the label is simply Class 1, the model has no hint what this
might mean and whether this constitutes a contradiction or entailment.

 Transformers has an MNLI model for zero-shot classification built in. We can ini‐
tialize it via a pipeline as follows:
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from transformers import pipeline

pipe = pipeline("zero-shot-classification", device=0)

The setting device=0 makes sure that the model runs on the GPU instead of the
default CPU to speed up inference. To classify a text, we simply need to pass it to the
pipeline along with the label names. In addition, we can set multi_label=True to
ensure that all the scores are returned and not only the maximum for single-label
classification:

sample = ds["train"][0]
print(f"Labels: {sample['labels']}")
output = pipe(sample["text"], all_labels, multi_label=True)
print(output["sequence"][:400])
print("\nPredictions:")

for label, score in zip(output["labels"], output["scores"]):
    print(f"{label}, {score:.2f}")

Labels: ['new model']
Add new CANINE model

#  New model addition

## Model description

Google recently proposed a new **C**haracter **A**rchitecture with **N**o
tokenization **I**n **N**eural **E**ncoders architecture (CANINE). Not only the
title is exciting:

> Pipelined NLP systems have largely been superseded by end-to-end neural
modeling, yet nearly all commonly-used models still require an explicit tokeni

Predictions:
new model, 0.98
tensorflow or tf, 0.37
examples, 0.34
usage, 0.30
pytorch, 0.25
documentation, 0.25
model training, 0.24
tokenization, 0.17
pipeline, 0.16

Since we are using a subword tokenizer, we can even pass code to
the model! The tokenization might not be very efficient because
only a small fraction of the pretraining dataset for the zero-shot
pipeline consists of code snippets, but since code is also made up of
a lot of natural words this is not a big issue. Also, the code block
might contain important information, such as the framework
(PyTorch or TensorFlow).
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We can see that the model is very confident that this text is about a new model, but it
also produces relatively high scores for the other labels. An important aspect for zero-
shot classification is the domain we’re operating in. The texts we are dealing with here
are very technical and mostly about coding, which makes them quite different from
the original text distribution in the MNLI dataset. Thus, it is not surprising that this is
a challenging task for the model; it might work much better for some domains than
others, depending on how close they are to the training data.

Let’s write a function that feeds a single example through the zero-shot pipeline, and
then scale it out to the whole validation set by running map():

def zero_shot_pipeline(example):
    output = pipe(example["text"], all_labels, multi_label=True)
    example["predicted_labels"] = output["labels"]
    example["scores"] = output["scores"]
    return example

ds_zero_shot = ds["valid"].map(zero_shot_pipeline)

Now that we have our scores, the next step is to determine which set of labels should
be assigned to each example. There are a few options we can experiment with:

• Define a threshold and select all labels above the threshold.
• Pick the top k labels with the k highest scores.

To help us determine which method is best, let’s write a get_preds() function that
applies one of the approaches to retrieve the predictions:

def get_preds(example, threshold=None, topk=None):
    preds = []
    if threshold:
        for label, score in zip(example["predicted_labels"], example["scores"]):
            if score >= threshold:
                preds.append(label)
    elif topk:
        for i in range(topk):
            preds.append(example["predicted_labels"][i])
    else:
        raise ValueError("Set either `threshold` or `topk`.")
    return {"pred_label_ids": list(np.squeeze(mlb.transform([preds])))}

Next, let’s write a second function, get_clf_report(), that returns the Scikit-learn
classification report from a dataset with the predicted labels:

def get_clf_report(ds):
    y_true = np.array(ds["label_ids"])
    y_pred = np.array(ds["pred_label_ids"])
    return classification_report(
        y_true, y_pred, target_names=mlb.classes_, zero_division=0,
        output_dict=True)
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Armed with these two functions, let’s start with the top-k method by increasing k for
several values and then plotting the micro and macro F1-scores across the validation
set:

macros, micros = [], []
topks = [1, 2, 3, 4]
for topk in topks:
    ds_zero_shot = ds_zero_shot.map(get_preds, batched=False,
                                    fn_kwargs={'topk': topk})
    clf_report = get_clf_report(ds_zero_shot)
    micros.append(clf_report['micro avg']['f1-score'])
    macros.append(clf_report['macro avg']['f1-score'])

plt.plot(topks, micros, label='Micro F1')
plt.plot(topks, macros, label='Macro F1')
plt.xlabel("Top-k")
plt.ylabel("F1-score")
plt.legend(loc='best')
plt.show()

From the plot we can see that the best results are obtained by selecting the label with
the highest score per example (top 1). This is perhaps not so surprising, given that
most of the examples in our datasets have only one label. Let’s now compare this
against setting a threshold, so we can potentially predict more than one label per
example:

macros, micros = [], []
thresholds = np.linspace(0.01, 1, 100)
for threshold in thresholds:
    ds_zero_shot = ds_zero_shot.map(get_preds,
                                    fn_kwargs={"threshold": threshold})
    clf_report = get_clf_report(ds_zero_shot)
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    micros.append(clf_report["micro avg"]["f1-score"])
    macros.append(clf_report["macro avg"]["f1-score"])

plt.plot(thresholds, micros, label="Micro F1")
plt.plot(thresholds, macros, label="Macro F1")
plt.xlabel("Threshold")
plt.ylabel("F1-score")
plt.legend(loc="best")
plt.show()

best_t, best_micro = thresholds[np.argmax(micros)], np.max(micros)
print(f'Best threshold (micro): {best_t} with F1-score {best_micro:.2f}.')
best_t, best_macro = thresholds[np.argmax(macros)], np.max(macros)
print(f'Best threshold (micro): {best_t} with F1-score {best_macro:.2f}.')

Best threshold (micro): 0.75 with F1-score 0.46.
Best threshold (micro): 0.72 with F1-score 0.42.

This approach fares somewhat worse than the top-1 results, but we can see the preci‐
sion/recall trade-off clearly in this graph. If we set the threshold too low, then there
are too many predictions, which leads to a low precision. If we set the threshold too
high, then we will make hardly any predictions, which produces a low recall. From
the plot we can see that a threshold value of around 0.8 is the sweet spot between the
two.

Since the top-1 method performs best, let’s use this to compare zero-shot classifica‐
tion against Naive Bayes on the test set:

ds_zero_shot = ds['test'].map(zero_shot_pipeline)
ds_zero_shot = ds_zero_shot.map(get_preds, fn_kwargs={'topk': 1})
clf_report = get_clf_report(ds_zero_shot)
for train_slice in train_slices:
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    macro_scores['Zero Shot'].append(clf_report['macro avg']['f1-score'])
    micro_scores['Zero Shot'].append(clf_report['micro avg']['f1-score'])

plot_metrics(micro_scores, macro_scores, train_samples, "Zero Shot")

Comparing the zero-shot pipeline to the baseline, we observe two things:

1. If we have less than 50 labeled samples, the zero-shot pipeline handily outper‐
forms the baseline.

2. Even above 50 samples, the performance of the zero-shot pipeline is superior
when considering both the micro and macro F1-scores. The results for the micro
F1-score tell us that the baseline performs well on the frequent classes, while the
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zero-shot pipeline excels at those since it does not require any examples to learn
from.

You might notice a slight paradox in this section: although we talk
about dealing with no labels, we still use the validation and test
sets. We use them to showcase different techniques and to make
the results comparable between them. Even in a real use case, it
makes sense to gather a handful of labeled examples to run some
quick evaluations. The important point is that we did not adapt the
parameters of the model with the data; instead, we just adapted
some hyperparameters.

If you find it difficult to get good results on your own dataset, here are a few things
you can do to improve the zero-shot pipeline:

• The way the pipeline works makes it very sensitive to the names of the labels. If
the names don’t make much sense or are not easily connected to the texts, the
pipeline will likely perform poorly. Either try using different names or use several
names in parallel and aggregate them in an extra step.

• Another thing you can improve is the form of the hypothesis. By default it is
hypothesis="This is example is about {}", but you can pass any other text
to the pipeline. Depending on the use case, this might improve the performance.

Let’s now turn to the regime where we have a few labeled examples we can use to
train a model.

Working with a Few Labels
In most NLP projects, you’ll have access to at least a few labeled examples. The labels
might come directly from a client or cross-company team, or you might decide to just
sit down and annotate a few examples yourself. Even for the previous approach, we
needed a few labeled examples to evaluate how well the zero-shot approach worked.
In this section, we’ll have a look at how we can best leverage the few, precious labeled
examples that we have. Let’s start by looking at a technique known as data augmenta‐
tion that can help us multiply the little labeled data that we have.

Data Augmentation
One simple but effective way to boost the performance of text classifiers on small
datasets is to apply data augmentation techniques to generate new training examples
from the existing ones. This is a common strategy in computer vision, where images
are randomly perturbed without changing the meaning of the data (e.g., a slightly
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rotated cat is still a cat). For text, data augmentation is somewhat trickier because per‐
turbing the words or characters can completely change the meaning. For example, the
two questions “Are elephants heavier than mice?” and “Are mice heavier than ele‐
phants?” differ by a single word swap, but have opposite answers. However, if the text
consists of more than a few sentences (like our GitHub issues do), then the noise
introduced by these types of transformations will generally not affect the label. In
practice, there are two types of data augmentation techniques that are commonly
used:

Back translation
Take a text in the source language, translate it into one or more target languages
using machine translation, and then translate it back to the source language. Back
translation tends to works best for high-resource languages or corpora that don’t
contain too many domain-specific words.

Token perturbations
Given a text from the training set, randomly choose and perform simple trans‐
formations like random synonym replacement, word insertion, swap, or
deletion.4

Examples of these transformations are shown in Table 9-2. For a detailed list of other
data augmentation techniques for NLP, we recommend reading Amit Chaudhary’s
blog post “A Visual Survey of Data Augmentation in NLP”.

Table 9-2. Different types of data augmentation techniques for text

Augmentation Sentence
None Even if you defeat me Megatron, others will rise to defeat your tyranny

Synonym replace Even if you kill me Megatron, others will prove to defeat your tyranny

Random insert Even if you defeat me Megatron, others humanity will rise to defeat your tyranny

Random swap You even if defeat me Megatron, others will rise defeat to tyranny your

Random delete Even if you me Megatron, others to defeat tyranny

Back translate (German) Even if you defeat me, others will rise up to defeat your tyranny

You can implement back translation using machine translation models like M2M100,
while libraries like NlpAug and TextAttack provide various recipes for token pertur‐
bations. In this section, we’ll focus on using synonym replacement as it’s simple to
implement and gets across the main idea behind data augmentation.
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We’ll use the ContextualWordEmbsAug augmenter from NlpAug to leverage the con‐
textual word embeddings of DistilBERT for our synonym replacements. Let’s start
with a simple example:

from transformers import set_seed
import nlpaug.augmenter.word as naw

set_seed(3)
aug = naw.ContextualWordEmbsAug(model_path="distilbert-base-uncased",
                                device="cpu", action="substitute")

text = "Transformers are the most popular toys"
print(f"Original text: {text}")
print(f"Augmented text: {aug.augment(text)}")

Original text: Transformers are the most popular toys
Augmented text: transformers'the most popular toys

Here we can see how the word “are” has been replaced with an apostrophe to generate
a new synthetic training example. We can wrap this augmentation in a simple func‐
tion as follows:

def augment_text(batch, transformations_per_example=1):
    text_aug, label_ids = [], []
    for text, labels in zip(batch["text"], batch["label_ids"]):
        text_aug += [text]
        label_ids += [labels]
        for _ in range(transformations_per_example):
            text_aug += [aug.augment(text)]
            label_ids += [labels]
    return {"text": text_aug, "label_ids": label_ids}

Now when we pass this function to the map() method, we can generate any number
of new examples with the transformations_per_example argument. We can use this
function in our code to train the Naive Bayes classifier by simply adding one line after
we select the slice:

ds_train_sample = ds_train_sample.map(augment_text, batched=True,
    remove_columns=ds_train_sample.column_names).shuffle(seed=42)

Including this and rerunning the analysis produces the plot shown here:

plot_metrics(micro_scores, macro_scores, train_samples, "Naive Bayes + Aug")
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From the figure, we can see that a small amount of data augmentation improves the
F1-score of the Naive Bayes classifier by around 5 points, and it overtakes the zero-
shot pipeline for the macro scores once we have around 170 training samples. Let’s
now take a look at a method based on using the embeddings of large language
models.
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Using Embeddings as a Lookup Table
Large language models such as GPT-3 have been shown to be excellent at solving
tasks with limited data. The reason is that these models learn useful representations
of text that encode information across many dimensions, such as sentiment, topic,
text structure, and more. For this reason, the embeddings of large language models
can be used to develop a semantic search engine, find similar documents or com‐
ments, or even classify text.

In this section we’ll create a text classifier that’s modeled after the OpenAI API classi‐
fication endpoint. The idea follows a three-step process:

1. Use the language model to embed all labeled texts.
2. Perform a nearest neighbor search over the stored embeddings.
3. Aggregate the labels of the nearest neighbors to get a prediction.

The process is illustrated in Figure 9-3, which shows how labeled data is embedded
with a model and stored with the labels. When a new text needs to be classified it is
embedded as well, and the label is given based on the labels of the nearest neighbors.
It is important to calibrate the number of neighbors to be searched for, as too few
might be noisy and too many might mix in neighboring groups.

Figure 9-3. An illustration of nearest neighbor embedding lookup

The beauty of this approach is that no model fine-tuning is necessary to leverage the
few available labeled data points. Instead, the main decision to make this approach
work is to select an appropriate model that is ideally pretrained on a similar domain
to your dataset.
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Since GPT-3 is only available through the OpenAI API, we’ll use GPT-2 to test the
technique. Specifically, we’ll use a variant of GPT-2 that was trained on Python code,
which will hopefully capture some of the context contained in our GitHub issues.

Let’s write a helper function that takes a list of texts and uses the model to create a
single-vector representation for each text. One problem we have to deal with is that
transformer models like GPT-2 will actually return one embedding vector per token.
For example, given the sentence “I took my dog for a walk”, we can expect several
embedding vectors, one for each token. But what we really want is a single embed‐
ding vector for the whole sentence (or GitHub issue in our application). To deal with
this, we can use a technique called pooling. One of the simplest pooling methods is to
average the token embeddings, which is called mean pooling. With mean pooling, the
only thing we need to watch out for is that we don’t include padding tokens in the
average, so we can use the attention mask to handle that.

To see how this works, let’s load a GPT-2 tokenizer and model, define the mean pool‐
ing operation, and wrap the whole process in a simple embed_text() function:

import torch
from transformers import AutoTokenizer, AutoModel

model_ckpt = "miguelvictor/python-gpt2-large"
tokenizer = AutoTokenizer.from_pretrained(model_ckpt)
model = AutoModel.from_pretrained(model_ckpt)

def mean_pooling(model_output, attention_mask):
    # Extract the token embeddings
    token_embeddings = model_output[0]
    # Compute the attention mask
    input_mask_expanded = (attention_mask
                           .unsqueeze(-1)
                           .expand(token_embeddings.size())
                           .float())
    # Sum the embeddings, but ignore masked tokens
    sum_embeddings = torch.sum(token_embeddings * input_mask_expanded, 1)
    sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9)
    # Return the average as a single vector
    return sum_embeddings / sum_mask

def embed_text(examples):
    inputs = tokenizer(examples["text"], padding=True, truncation=True,
                       max_length=128, return_tensors="pt")
    with torch.no_grad():
        model_output = model(**inputs)
    pooled_embeds = mean_pooling(model_output, inputs["attention_mask"])
    return {"embedding": pooled_embeds.cpu().numpy()}

Now we can get the embeddings for each split. Note that GPT-style models don’t have
a padding token, and therefore we need to add one before we can get the embeddings
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in a batched fashion as implemented in the preceding code. We’ll just recycle the end-
of-string token for this purpose:

tokenizer.pad_token = tokenizer.eos_token
embs_train = ds["train"].map(embed_text, batched=True, batch_size=16)
embs_valid = ds["valid"].map(embed_text, batched=True, batch_size=16)
embs_test = ds["test"].map(embed_text, batched=True, batch_size=16)

Now that we have all the embeddings, we need to set up a system to search them. We
could write a function that calculates, say, the cosine similarity between a new text
embedding that we’ll query and the existing embeddings in the training set. Alterna‐
tively, we can use a built-in structure of  Datasets called a FAISS index.5 We already
encountered FAISS in Chapter 7. You can think of this as a search engine for embed‐
dings, and we’ll have a closer look at how it works in a minute. We can use an existing
field of the dataset to create a FAISS index with add_faiss_index(), or we can load
new embeddings into the dataset with add_faiss_index_from_external_arrays().
Let’s use the former function to add our training embeddings to the dataset as
follows:

embs_train.add_faiss_index("embedding")

This created a new FAISS index called embedding. We can now perform a nearest
neighbor lookup by calling the function get_nearest_examples(). It returns the
closest neighbors as well as the matching score for each neighbor. We need to specify
the query embedding as well as the number of nearest neighbors to retrieve. Let’s give
it a spin and have a look at the documents that are closest to an example:

i, k = 0, 3 # Select the first query and 3 nearest neighbors
rn, nl = "\r\n\r\n", "\n" # Used to remove newlines in text for compact display

query =  np.array(embs_valid[i]["embedding"], dtype=np.float32)
scores, samples = embs_train.get_nearest_examples("embedding", query, k=k)

print(f"QUERY LABELS: {embs_valid[i]['labels']}")
print(f"QUERY TEXT:\n{embs_valid[i]['text'][:200].replace(rn, nl)} [...]\n")
print("="*50)
print(f"Retrieved documents:")
for score, label, text in zip(scores, samples["labels"], samples["text"]):
    print("="*50)
    print(f"TEXT:\n{text[:200].replace(rn, nl)} [...]")
    print(f"SCORE: {score:.2f}")
    print(f"LABELS: {label}")

QUERY LABELS: ['new model']
QUERY TEXT:
Implementing efficient self attention in T5
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#  New model addition
My teammates and I (including @ice-americano) would like to use efficient self
attention methods such as Linformer, Performer and [...]

==================================================
Retrieved documents:
==================================================
TEXT:
Add Linformer model

#  New model addition
## Model description
### Linformer: Self-Attention with Linear Complexity
Paper published June 9th on ArXiv: https://arxiv.org/abs/2006.04768
La [...]
SCORE: 54.92
LABELS: ['new model']
==================================================
TEXT:
Add FAVOR+ / Performer attention

#  FAVOR+ / Performer attention addition
Are there any plans to add this new attention approximation block to
Transformers library?
## Model description
The n [...]
SCORE: 57.90
LABELS: ['new model']
==================================================
TEXT:
Implement DeLighT: Very Deep and Light-weight Transformers

#  New model addition
## Model description
DeLight, that delivers similar or better performance than transformer-based
models with sign [...]
SCORE: 60.12
LABELS: ['new model']

Nice! This is exactly what we hoped for: the three retrieved documents that we got via
embedding lookup all have the same labels and we can already see from the titles that
they are all very similar. The query as well as the retrieved documents revolve around
adding new and efficient transformer models. The question remains, however, what
is the best value for k? Similarly, how we should then aggregate the labels of the
retrieved documents? Should we, for example, retrieve three documents and assign all
labels that occurred at least twice? Or should we go for 20 and use all labels that
appeared at least 5 times? Let’s investigate this systematically: we’ll try several values
for k and then vary the threshold m < k for label assignment with a helper function.
We’ll record the macro and micro performance for each setting so we can decide later
which run performed best. Instead of looping over each sample in the validation set
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we can make use of the function get_nearest_examples_batch(), which accepts a
batch of queries:

def get_sample_preds(sample, m):
    return (np.sum(sample["label_ids"], axis=0) >= m).astype(int)

def find_best_k_m(ds_train, valid_queries, valid_labels, max_k=17):
    max_k = min(len(ds_train), max_k)
    perf_micro = np.zeros((max_k, max_k))
    perf_macro = np.zeros((max_k, max_k))
    for k in range(1, max_k):
        for m in range(1, k + 1):
            _, samples = ds_train.get_nearest_examples_batch("embedding",
                                                             valid_queries, k=k)
            y_pred = np.array([get_sample_preds(s, m) for s in samples])
            clf_report = classification_report(valid_labels, y_pred,
                target_names=mlb.classes_, zero_division=0, output_dict=True)
            perf_micro[k, m] = clf_report["micro avg"]["f1-score"]
            perf_macro[k, m] = clf_report["macro avg"]["f1-score"]
    return perf_micro, perf_macro

Let’s check what the best values would be with all the training samples and visualize
the scores for all k and m configurations:

valid_labels = np.array(embs_valid["label_ids"])
valid_queries = np.array(embs_valid["embedding"], dtype=np.float32)
perf_micro, perf_macro = find_best_k_m(embs_train, valid_queries, valid_labels)

fig, (ax0, ax1) = plt.subplots(1, 2, figsize=(10, 3.5), sharey=True)
ax0.imshow(perf_micro)
ax1.imshow(perf_macro)

ax0.set_title("micro scores")
ax0.set_ylabel("k")
ax1.set_title("macro scores")
for ax in [ax0, ax1]:
    ax.set_xlim([0.5, 17 - 0.5])
    ax.set_ylim([17 - 0.5, 0.5])
    ax.set_xlabel("m")
plt.show()
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From the plots we can see that there is a pattern: choosing m too large or small for a
given k yields suboptimal results. The best performance is achieved when choosing a
ratio of approximately m/k = 1/3. Let’s see which k and m give the best result overall:

k, m = np.unravel_index(perf_micro.argmax(), perf_micro.shape)
print(f"Best k: {k}, best m: {m}")

Best k: 15, best m: 5

The perfomance is best when we choose k = 15 and m = 5, or in other words when
we retrieve the 15 nearest neighbors and then assign the labels that occurred at least 5
times. Now that we have a good method for finding the best values for the embedding
lookup, we can play the same game as with the Naive Bayes classifier where we go
through the slices of the training set and evaluate the performance. Before we can
slice the dataset, we need to remove the index since we cannot slice a FAISS index like
the dataset. The rest of the loops stay exactly the same, with the addition of using the
validation set to get the best k and m values:

embs_train.drop_index("embedding")
test_labels = np.array(embs_test["label_ids"])
test_queries = np.array(embs_test["embedding"], dtype=np.float32)

for train_slice in train_slices:
    # Create a Faiss index from training slice
    embs_train_tmp = embs_train.select(train_slice)
    embs_train_tmp.add_faiss_index("embedding")
    # Get best k, m values with validation set
    perf_micro, _ = find_best_k_m(embs_train_tmp, valid_queries, valid_labels)
    k, m = np.unravel_index(perf_micro.argmax(), perf_micro.shape)
    # Get predictions on test set
    _, samples = embs_train_tmp.get_nearest_examples_batch("embedding",
                                                           test_queries,
                                                           k=int(k))
    y_pred = np.array([get_sample_preds(s, m) for s in samples])
    # Evaluate predictions
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    clf_report = classification_report(test_labels, y_pred,
        target_names=mlb.classes_, zero_division=0, output_dict=True,)
    macro_scores["Embedding"].append(clf_report["macro avg"]["f1-score"])
    micro_scores["Embedding"].append(clf_report["micro avg"]["f1-score"])

plot_metrics(micro_scores, macro_scores, train_samples, "Embedding")
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The embedding lookup is competitive on the micro scores with the previous
approaches while just having two “learnable” parameters, k and m, but performs
slightly worse on the macro scores.

Take these results with a grain of salt; which method works best strongly depends on
the domain. The zero-shot pipeline’s training data is quite different from the GitHub
issues dataset we’re using it on, which contains a lot of code that the model likely has
not encountered much before. For a more common task such as sentiment analysis of
reviews, the pipeline might work much better. Similarly, the embeddings’ quality
depends on the model and the data it was trained on. We tried half a dozen models,
such as sentence-transformers/stsb-roberta-large, which was trained to give
high-quality embeddings of sentences, and microsoft/codebert-base and dbern
sohn/roberta-python, which were trained on code and documentation. For this spe‐
cific use case, GPT-2 trained on Python code worked best.

Since you don’t actually need to change anything in your code besides replacing the
model checkpoint name to test another model, you can quickly try out a few models
once you have the evaluation pipeline set up.

Let’s now compare this simple embedding trick against simply fine-tuning a trans‐
former on the limited data we have.

Efficient Similarity Search with FAISS
We first encountered FAISS in Chapter 7, where we used it to retrieve documents via
the DPR embeddings. Here we’ll explain briefly how the FAISS library works and why
it is a powerful tool in the ML toolbox.

We are used to performing fast text queries on huge datasets such as Wikipedia or the
web with search engines such as Google. When we move from text to embeddings, we
would like to maintain that performance; however, the methods used to speed up text
queries don’t apply to embeddings.

To speed up text search we usually create an inverted index that maps terms to docu‐
ments. An inverted index works like an index at the end of a book: each word is map‐
ped to the pages (or in our case, document) it occurs in. When we later run a query
we can quickly look up in which documents the search terms appear. This works well
with discrete objects such as words, but does not work with continuous objects such
as vectors. Each document likely has a unique vector, and therefore the index will
never match with a new vector. Instead of looking for exact matches, we need to look
for close or similar matches.

When we want to find the most similar vectors in a database to a query vector, in
theory we need to compare the query vector to each of the n vectors in the database.
For a small database such as we have in this chapter this is no problem, but if we
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scaled this up to thousands or even million of entries we would need to wait a while
for each query to be processed.

FAISS addresses this issue with several tricks. The main idea is to partition the data‐
set. If we only need to compare the query vector to a subset of the database, we can
speed up the process significantly. But if we just randomly partition the dataset, how
can we decide which partition to search, and what guarantees do we get for finding
the most similar entries? Evidently, there must be a better solution: apply k-means
clustering to the dataset! This clusters the embeddings into groups by similarity. Fur‐
thermore, for each group we get a centroid vector, which is the average of all mem‐
bers of the group (Figure 9-4).

Figure 9-4. The structure of a FAISS index: the gray points represent data points added
to the index, the bold black points are the cluster centers found via k-means clustering,
and the colored areas represent the regions belonging to a cluster center

Given such a grouping, searching among n vectors is much easier: we first search
across the k centroids for the one that is most similar to our query (k comparisons),
and then we search within the group ( k

n  elements to compare). This reduces the num‐

ber of comparisons from n to k + n
k . So the question is, what is the best option for k?

If it is too small, each group still contains many samples we need to compare against
in the second step, and if k is too large there are many centroids we need to search
through. Looking for the minimum of the function f k = k + n

k  with respect to k, we
find k = n. In fact, we can visualize this with the following graphic with n = 220.
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In the plot you can see the number of comparisons as a function of the number of
clusters. We are looking for the minimum of this function, where we need to do the
least comparisons. We can see that the minimum is exactly where we expected to see
it, at 220 = 210 = 1, 024.

In addition to speeding up queries with partitioning, FAISS also allows you to utilize
GPUs for a further speedup. If memory becomes a concern there are also several
options to compress the vectors with advanced quantization schemes. If you want to
use FAISS for your project, the repository has a simple guide for you to choose the
right methods for your use case.

One of the largest projects to use FAISS was the creation of the CCMatrix corpus by
Facebook. The authors used multilingual embeddings to find parallel sentences in dif‐
ferent languages. This enormous corpus was subsequently used to train M2M100, a
large machine translation model that is able to directly translate between any of 100
languages.

Fine-Tuning a Vanilla Transformer
If we have access to labeled data, we can also try to do the obvious thing: simply fine-
tune a pretrained transformer model. In this section, we’ll use the standard BERT
checkpoint as a starting point. Later, we’ll see the effect that fine-tuning the language
model has on performance.
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For many applications, starting with a pretrained BERT-like model
is a good idea. However, if the domain of your corpus differs signif‐
icantly from the pretraining corpus (which is usually Wikipedia),
you should explore the many models that are available on the Hug‐
ging Face Hub. Chances are someone has already pretrained a
model on your domain!

Let’s start by loading the pretrained tokenizer, tokenizing our dataset, and getting rid
of the columns we don’t need for training and evaluation:

import torch
from transformers import (AutoTokenizer, AutoConfig,
                          AutoModelForSequenceClassification)

model_ckpt = "bert-base-uncased"
tokenizer = AutoTokenizer.from_pretrained(model_ckpt)

def tokenize(batch):
    return tokenizer(batch["text"], truncation=True, max_length=128)
ds_enc = ds.map(tokenize, batched=True)
ds_enc = ds_enc.remove_columns(['labels', 'text'])

The multilabel loss function expects the labels to be of type float, since it also allows
for class probabilities instead of discrete labels. Therefore, we need to change the type
of the column label_ids. Since changing the format of the column element-wise
does not play well with Arrow’s typed format, we’ll do a little workaround. First, we
create a new column with the labels. The format of that column is inferred from the
first element. Then we delete the original column and rename the new one to take the
place of the original one:

ds_enc.set_format("torch")
ds_enc = ds_enc.map(lambda x: {"label_ids_f": x["label_ids"].to(torch.float)},
                    remove_columns=["label_ids"])
ds_enc = ds_enc.rename_column("label_ids_f", "label_ids")

Since we are likely to quickly overfit the training data due to its limited size, we set
load_best_model_at_end=True and choose the best model based on the micro
F1-score:

from transformers import Trainer, TrainingArguments

training_args_fine_tune = TrainingArguments(
    output_dir="./results", num_train_epochs=20, learning_rate=3e-5,
    lr_scheduler_type='constant', per_device_train_batch_size=4,
    per_device_eval_batch_size=32, weight_decay=0.0,
    evaluation_strategy="epoch", save_strategy="epoch",logging_strategy="epoch",
    load_best_model_at_end=True, metric_for_best_model='micro f1',
    save_total_limit=1, log_level='error')
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We need the F1-score to choose the best model, so we need to make sure it is calcula‐
ted during the evaluation. Because the model returns the logits, we first need to nor‐
malize the predictions with a sigmoid function and can then binarize them with a
simple threshold. Then we return the scores we are interested in from the classifica‐
tion report:

from scipy.special import expit as sigmoid

def compute_metrics(pred):
    y_true = pred.label_ids
    y_pred = sigmoid(pred.predictions)
    y_pred = (y_pred>0.5).astype(float)

    clf_dict = classification_report(y_true, y_pred, target_names=all_labels,
                                     zero_division=0, output_dict=True)
    return {"micro f1": clf_dict["micro avg"]["f1-score"],
            "macro f1": clf_dict["macro avg"]["f1-score"]}

Now we are ready to rumble! For each training set slice we train a classifier from
scratch, load the best model at the end of the training loop, and store the results on
the test set:

config = AutoConfig.from_pretrained(model_ckpt)
config.num_labels = len(all_labels)
config.problem_type = "multi_label_classification"

for train_slice in train_slices:
    model = AutoModelForSequenceClassification.from_pretrained(model_ckpt,
                                                               config=config)
    trainer = Trainer(
        model=model, tokenizer=tokenizer,
        args=training_args_fine_tune,
        compute_metrics=compute_metrics,
        train_dataset=ds_enc["train"].select(train_slice),
        eval_dataset=ds_enc["valid"],)

    trainer.train()
    pred = trainer.predict(ds_enc["test"])
    metrics = compute_metrics(pred)
    macro_scores["Fine-tune (vanilla)"].append(metrics["macro f1"])
    micro_scores["Fine-tune (vanilla)"].append(metrics["micro f1"])

plot_metrics(micro_scores, macro_scores, train_samples, "Fine-tune (vanilla)")
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First of all we see that simply fine-tuning a vanilla BERT model on the dataset leads to
competitive results when we have access to around 64 examples. We also see that
before this the behavior is a bit erratic, which is again due to training a model on a
small sample where some labels can be unfavorably unbalanced. Before we make use
of the unlabeled part of our dataset, let’s take a quick look at another promising
approach for using language models in the few-shot domain.
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In-Context and Few-Shot Learning with Prompts
We saw earlier in this chapter that we can use a language model like BERT or GPT-2
and adapt it to a supervised task by using prompts and parsing the model’s token pre‐
dictions. This is different from the classic approach of adding a task-specific head and
tuning the model parameters for the task. On the plus side, this approach does not
require any training data, but on the negative side it seems we can’t leverage labeled
data if we have access to it. There is a middle ground that we can sometimes take
advantage of called in-context or few-shot learning.

To illustrate the concept, consider an English to French translation task. In the zero-
shot paradigm, we would construct a prompt that might look as follows:

prompt = """\
Translate English to French:
thanks =>
"""

This hopefully prompts the model to predict the tokens of the word “merci”. We
already saw when using GPT-2 for summarization in Chapter 6 that adding “TL;DR”
to a text prompted the model to generate a summary without explicitly being trained
to do this. An interesting finding of the GPT-3 paper was the ability of large language
models to effectively learn from examples presented in the prompt—so, the previous
translation example could be augmented with several English to German examples,
which would make the model perform much better on this task.6

Furthermore, the authors found that the larger the models are scaled, the better they
are at using the in-context examples, leading to significant performance boosts.
Although GPT-3-sized models are challenging to use in production, this is an excit‐
ing emerging research field and people have built cool applications, such as a natural
language shell where commands are entered in natural language and parsed by
GPT-3 to shell commands.

An alternative approach to using labeled data is to create examples of the prompts
and desired predictions and continue training the language model on these examples.
A novel method called ADAPET uses such an approach and beats GPT-3 on a wide
variety of tasks,7 tuning the model with generated prompts. Recent work by Hugging
Face researchers suggests that such an approach can be more data-efficient than fine-
tuning a custom head.8
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In this section we briefly looked at various ways to make good use of the few labeled
examples that we have. Very often we also have access to a lot of unlabeled data in
addition to the labeled examples; in the next section we’ll discuss how to make good
use of that.

Leveraging Unlabeled Data
Although having access to large volumes of high-quality labeled data is the best-case
scenario to train a classifier, this does not mean that unlabeled data is worthless. Just
think about the pretraining of most models we have used: even though they are
trained on mostly unrelated data from the internet, we can leverage the pretrained
weights for other tasks on a wide variety of texts. This is the core idea of transfer
learning in NLP. Naturally, if the downstream task has similar textual structure as the
pretraining texts the transfer works better, so if we can bring the pretraining task
closer to the downstream objective we could potentially improve the transfer.

Let’s think about this in terms of our concrete use case: BERT is pretrained on the
BookCorpus and English Wikipedia, and texts containing code and GitHub issues are
definitely a small niche in these datasets. If we pretrained BERT from scratch we
could do it on a crawl of all of the issues on GitHub, for example. However, this
would be expensive, and a lot of aspects about language that BERT has learned are
still valid for GitHub issues. So is there a middle ground between retraining from
scratch and just using the model as is for classification? There is, and it is called
domain adaptation (which we also saw for question answering in Chapter 7). Instead
of retraining the language model from scratch, we can continue training it on data
from our domain. In this step we use the classic language model objective of predict‐
ing masked words, which means we don’t need any labeled data. After that we can
load the adapted model as a classifier and fine-tune it, thus leveraging the unlabeled
data.

The beauty of domain adaptation is that compared to labeled data, unlabeled data is
often abundantly available. Furthermore, the adapted model can be reused for many
use cases. Imagine you want to build an email classifier and apply domain adaptation
on all your historic emails. You can later use the same model for named entity recog‐
nition or another classification task like sentiment analysis, since the approach is
agnostic to the downstream task.

Let’s now see the steps we need to take to fine-tune a pretrained language model.

Fine-Tuning a Language Model
In this section we’ll fine-tune the pretrained BERT model with masked language
modeling on the unlabeled portion of our dataset. To do this we only need two new
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concepts: an extra step when tokenizing the data and a special data collator. Let’s start
with the tokenization.

In addition to the ordinary tokens from the text the tokenizer also adds special
tokens to the sequence, such as the [CLS] and [SEP] tokens that are used for classifi‐
cation and next sentence prediction. When we do masked language modeling, we
want to make sure we don’t train the model to also predict these tokens. For this rea‐
son we mask them from the loss, and we can get a mask when tokenizing by setting
return_special_tokens_mask=True. Let’s retokenize the text with that setting:

def tokenize(batch):
    return tokenizer(batch["text"], truncation=True,
                     max_length=128, return_special_tokens_mask=True)

ds_mlm = ds.map(tokenize, batched=True)
ds_mlm = ds_mlm.remove_columns(["labels", "text", "label_ids"])

What’s missing to start with masked language modeling is the mechanism to mask
tokens in the input sequence and have the target tokens in the outputs. One way we
could approach this is by setting up a function that masks random tokens and creates
labels for these sequences. But this would double the size of the dataset, since we
would also store the target sequence in the dataset, and it would mean we would use
the same masking of a sequence every epoch.

A much more elegant solution is to use a data collator. Remember that the data colla‐
tor is the function that builds the bridge between the dataset and the model calls. A
batch is sampled from the dataset, and the data collator prepares the elements in the
batch to feed them to the model. In the simplest case we have encountered, it simply
concatenates the tensors of each element into a single tensor. In our case we can use it
to do the masking and label generation on the fly. That way we don’t need to store the
labels and we get new masks every time we sample. The data collator for this task is
called DataCollatorForLanguageModeling. We initialize it with the model’s tokenizer
and the fraction of tokens we want to mask via the mlm_probability argument. We’ll
use this collator to mask 15% of the tokens, which follows the procedure in the BERT
paper:

from transformers import DataCollatorForLanguageModeling, set_seed

data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer,
                                                mlm_probability=0.15)

Let’s have a quick look at the data collator in action to see what it actually does. To
quickly show the results in a DataFrame, we switch the return formats of the token‐
izer and the data collator to NumPy:

set_seed(3)
data_collator.return_tensors = "np"
inputs = tokenizer("Transformers are awesome!", return_tensors="np")
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outputs = data_collator([{"input_ids": inputs["input_ids"][0]}])

pd.DataFrame({
    "Original tokens": tokenizer.convert_ids_to_tokens(inputs["input_ids"][0]),
    "Masked tokens": tokenizer.convert_ids_to_tokens(outputs["input_ids"][0]),
    "Original input_ids": original_input_ids,
    "Masked input_ids": masked_input_ids,
    "Labels": outputs["labels"][0]}).T

0 1 2 3 4 5

Original tokens [CLS] transformers are awesome ! [SEP]

Masked tokens [CLS] transformers are awesome [MASK] [SEP]

Original input_ids 101 19081 2024 12476 999 102

Masked input_ids 101 19081 2024 12476 103 102

Labels -100 -100 -100 -100 999 -100

We see that the token corresponding to the exclamation mark has been replaced with
a mask token. In addition, the data collator returned a label array, which is –100 for
the original tokens and the token ID for the masked tokens. As we have seen previ‐
ously, the entries containing –100 are ignored when calculating the loss. Let’s switch
the format of the data collator back to PyTorch:

data_collator.return_tensors = "pt"

With the tokenizer and data collator in place, we are ready to fine-tune the masked
language model. We set up the TrainingArguments and Trainer as usual:

from transformers import AutoModelForMaskedLM

training_args = TrainingArguments(
    output_dir = f"{model_ckpt}-issues-128", per_device_train_batch_size=32,
    logging_strategy="epoch", evaluation_strategy="epoch", save_strategy="no",
    num_train_epochs=16, push_to_hub=True, log_level="error", report_to="none")

trainer = Trainer(
        model=AutoModelForMaskedLM.from_pretrained("bert-base-uncased"),
        tokenizer=tokenizer, args=training_args, data_collator=data_collator,
        train_dataset=ds_mlm["unsup"], eval_dataset=ds_mlm["train"])

trainer.train()

trainer.push_to_hub("Training complete!")

We can access the trainer’s log history to look at the training and validation losses of
the model. All logs are stored in trainer.state.log_history as a list of dictionaries
that we can easily load into a Pandas DataFrame. Since the training and validation loss
are recorded at different steps, there are missing values in the dataframe. For this rea‐
son we drop the missing values before plotting the metrics:
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df_log = pd.DataFrame(trainer.state.log_history)

(df_log.dropna(subset=["eval_loss"]).reset_index()["eval_loss"]
 .plot(label="Validation"))
df_log.dropna(subset=["loss"]).reset_index()["loss"].plot(label="Train")

plt.xlabel("Epochs")
plt.ylabel("Loss")
plt.legend(loc="upper right")
plt.show()

It seems that both the training and validation loss went down considerably. So let’s
check if we can also see an improvement when we fine-tune a classifier based on this
model.
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Fine-Tuning a Classifier
Now we’ll repeat the fine-tuning procedure, but with the slight difference that we load
our own custom checkpoint:

model_ckpt = f'{model_ckpt}-issues-128'
config = AutoConfig.from_pretrained(model_ckpt)
config.num_labels = len(all_labels)
config.problem_type = "multi_label_classification"

for train_slice in train_slices:
    model = AutoModelForSequenceClassification.from_pretrained(model_ckpt,
                                                               config=config)
    trainer = Trainer(
        model=model,
        tokenizer=tokenizer,
        args=training_args_fine_tune,
        compute_metrics=compute_metrics,
        train_dataset=ds_enc["train"].select(train_slice),
        eval_dataset=ds_enc["valid"],
    )

    trainer.train()
    pred = trainer.predict(ds_enc['test'])
    metrics = compute_metrics(pred)
    # DA refers to domain adaptation
    macro_scores['Fine-tune (DA)'].append(metrics['macro f1'])
    micro_scores['Fine-tune (DA)'].append(metrics['micro f1'])

Comparing the results to the fine-tuning based on vanilla BERT, we see that we get an
advantage especially in the low-data domain. We also gain a few percentage points in
the regime where more labeled data is available:

plot_metrics(micro_scores, macro_scores, train_samples, "Fine-tune (DA)")
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This highlights that domain adaptation can provide a slight boost to the model’s per‐
formance with unlabeled data and little effort. Naturally, the more unlabeled data and
the less labeled data you have, the more impact you will get with this method. Before
we conclude this chapter, we’ll show you a few more tricks for taking advantage of
unlabeled data.
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Advanced Methods
Fine-tuning the language model before tuning the classification head is a simple yet
reliable method to boost performance. However, there are sophisticated methods
than can leverage unlabeled data even further. We summarize a few of these methods
here, which should provide a good starting point if you need more performance.

Unsupervised data augmentation
The key idea behind unsupervised data augmentation (UDA) is that a model’s predic‐
tions should be consistent for an unlabeled example and a slightly distorted one. Such
distortions are introduced with standard data augmentation strategies such as token
replacement and back translation. Consistency is then enforced by minimizing the
KL divergence between the predictions of the original and distorted examples. This
process is illustrated in Figure 9-5, where the consistency requirement is incorporated
by augmenting the cross-entropy loss with an additional term from the unlabeled
examples. This means that one trains a model on the labeled data with the standard
supervised approach, but constrains the model to make consistent predictions on the
unlabeled data.

Figure 9-5. Training a model M with UDA (courtesy of Qizhe Xie)

The performance of this approach is quite impressive: with a handful of labeled
examples, BERT models trained with UDA get similar performance to models trained
on thousands of examples. The downside is that you need a data augmentation pipe‐
line, and training takes much longer since you need multiple forward passes to gener‐
ate the predicted distributions on the unlabeled and augmented examples.

Uncertainty-aware self-training
Another promising method to leverage unlabeled data is uncertainty-aware self-
training (UST). The idea here is to train a teacher model on the labeled data and then
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(2020).

use that model to create pseudo-labels on the unlabeled data. Then a student is
trained on the pseudo-labeled data, and after training it becomes the teacher for the
next iteration.

One interesting aspect of this method is how the pseudo-labels are generated: to get
an uncertainty measure of the model’s predictions the same input is fed several times
through the model with dropout turned on. Then the variance in the predictions
gives a proxy for the certainty of the model on a specific sample. With that uncer‐
tainty measure the pseudo-labels are then sampled using a method called Bayesian
Active Learning by Disagreement (BALD). The full training pipeline is illustrated in
Figure 9-6.

Figure 9-6. The UST method consists of a teacher that generates pseudo-labels and a stu‐
dent that is subsequently trained on those labels; after the student is trained it becomes
the teacher and the step is repeated (courtesy of Subhabrata Mukherjee)9

With this iteration scheme the teacher continuously gets better at creating pseudo-
labels, and thus the model’s performance improves. In the end this approach gets
within a few percent of models trained on the full training data with thousands of
samples and even beats UDA on several datasets.

Now that we’ve seen a few advanced methods, let’s take a step back and summarize
what we’ve learned in this chapter.
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Conclusion
In this chapter we’ve seen that even if we have only a few or even no labels, not all
hope is lost. We can utilize models that have been pretrained on other tasks, such as
the BERT language model or GPT-2 trained on Python code, to make predictions on
the new task of GitHub issue classification. Furthermore, we can use domain adapta‐
tion to get an additional boost when training the model with a normal classification
head.

Which of the presented approaches will work best on a specific use case depends on a
variety of aspects: how much labeled data you have, how noisy is it, how close the
data is to the pretraining corpus, and so on. To find out what works best, it is a good
idea to set up an evaluation pipeline and then iterate quickly. The flexible API of 

 Transformers allows you to quickly load a handful of models and compare them
without the need for any code changes. There are over 10,000 models on the Hugging
Face Hub, and chances are somebody has worked on a similar problem in the past
and you can build on top of this.

One aspect that is beyond the scope of this book is the trade-off between a more com‐
plex approach like UDA or UST and getting more data. To evaluate your approach, it
makes sense to at least build a validation and test set early on. At every step of the way
you can also gather more labeled data. Usually annotating a few hundred examples is
a matter of a couple of hours’ or a few days’ work, and there are many tools that can
assist you in doing so. Depending on what you are trying to achieve, it can make
sense to invest some time in creating a small, high-quality dataset rather than engi‐
neering a very complex method to compensate for the lack thereof. With the methods
we’ve presented in this chapter you can ensure that you get the most value out of your
precious labeled data.

Here, we have ventured into the low-data regime and seen that transformer models
are still powerful even with just a hundred examples. In the next chapter we’ll look at
the complete opposite case: we’ll see what we can do when we have hundreds of giga‐
bytes of data and a lot of compute. We’ll train a large transformer model from scratch
to autocomplete code for us.
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CHAPTER 10

Training Transformers from Scratch

In the opening paragraph of this book, we mentioned a sophisticated application
called GitHub Copilot that uses GPT-like transformers to perform code autocomple‐
tion, a feature that is particularly useful when programming in a new language or
framework or learning to code, or for automatically producing boilerplate code.
Other products that use AI models for this purpose include TabNine and Kite. Later,
in Chapter 5, we had a closer look at how we can use GPT models to generate high-
quality text. In this chapter, we’ll close the circle and build our very own GPT-like
model for generating Python source code! We call the resulting model CodeParrot.

So far we’ve mostly worked on data-constrained applications where the amount of
labeled training data is limited. In these cases, transfer learning helped us build per‐
formant models. We took transfer learning to the limit in Chapter 9, where we barely
used any training data at all.

In this chapter we’ll move to the other extreme and look at what we can do when we
are drowning in all the data we could possibly want. We’ll explore the pretraining step
itself and learn how to train a transformer from scratch. In working through this
problem, we’ll look at some aspects of training that we have not considered yet, such
as the following:

• Gathering and processing a very large dataset
• Creating a custom tokenizer for our dataset
• Training a model on multiple GPUs at scale

To efficiently train large models with billions of parameters, we’ll need special tools
for distributed training. Although the Trainer from  Transformers supports dis‐
tributed training, we’ll take the opportunity to showcase a powerful PyTorch library
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called  Accelerate. We’ll end up touching on some of the largest NLP models in use
today—but first, we need to find a sufficiently large dataset.

Unlike the code in the others in this book (which can be run with a
Jupyter notebook on a single GPU), the training code in this chap‐
ter is designed to be run as a script with multiple GPUs. If you want
to train your own version of CodeParrot, we recommend running
the script provided in the  Transformers repository.

Large Datasets and Where to Find Them
There are many domains where you may actually have a large amount of data at
hand, ranging from legal documents to biomedical datasets to programming codeba‐
ses. In most cases, these datasets are unlabeled, and their large size means that they
can usually only be labeled through the use of heuristics, or by using accompanying
metadata that is stored during the gathering process.

Nevertheless, a very large corpus can be useful even when it is unlabeled or only heu‐
ristically labeled. We saw an example of this in Chapter 9, where we used the unla‐
beled part of a dataset to fine-tune a language model for domain adaptation. This
approach typically yields a performance gain when limited data is available. The deci‐
sion to train from scratch rather than fine-tune an existing model is mostly dictated
by the size of your fine-tuning corpus and the domain differences between the avail‐
able pretrained models and the corpus.

Using a pretrained model forces you to use the model’s corresponding tokenizer, but
using a tokenizer that is trained on a corpus from another domain is typically subop‐
timal. For example, using GPT’s pretrained tokenizer on legal documents, other lan‐
guages, or even completely different sequences such as musical notes or DNA
sequences will result in poor tokenization (as we will see shortly).

As the amount of training data you have access to gets closer to the amount of data
used for pretraining, it thus becomes interesting to consider training the model and
the tokenizer from scratch, provided the necessary computational resources are avail‐
able. Before we discuss the different pretraining objectives further, we first need to
build a large corpus suitable for pretraining. Building such a corpus comes with its
own set of challenges, which we’ll explore in the next section.

Challenges of Building a Large-Scale Corpus
The quality of a model after pretraining largely reflects the quality of the pretraining
corpus. In particular, the model will inherit any defects in the pretraining corpus.
Thus, before we attempt to create one of our own it’s good to be aware of some of the
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Reading Books”, (2015); J. Dodge et al., “Documenting the English Colossal Clean Crawled Corpus”, (2021).

2 J. Bandy and N. Vincent, “Addressing Documentation Debt in Machine Learning Research: A Retrospective
Datasheet for BookCorpus”, (2021).

common issues and challenges that are associated with building large corpora for
pretraining.

As the dataset gets larger and larger, the chances that you can fully control—or at
least have a precise idea of—what is inside it diminish. A very large dataset will most
likely not have been assembled by dedicated creators that craft one example at a time,
while being aware and knowledgeable of the full pipeline and the task that the
machine learning model will be applied to. Instead, it is much more likely that a very
large dataset will have been created in an automatic or semiautomatic way by collect‐
ing data that is generated as a side effect of other activities. For instance, it may con‐
sist of all the documents (e.g., contracts, purchase orders, etc.) that a company stores,
logs from user activities, or data gathered from the internet.

There are several important consequences that follow from the fact that large-scale
datasets are mostly created with a high degree of automation. An important consider‐
ation is that there is limited control over both their content and the way they are cre‐
ated, and thus the risk of training a model on biased and lower-quality data increases.
Recent investigations of famous large-scale datasets like BookCorpus and C4, which
were used to train BERT and T5, respectively, have uncovered (among other things)
that:1

• A significant proportion of the C4 corpus is machine-translated rather than
translated by humans.

• Disparate erasure of African-American English as a result of stopword filtering
in C4 has resulted in an underrepresentation of such content.

• It is typically difficult in a large text corpus to find a middle ground between
including (often too much) sexually or other explicit content and totally erasing
all mention of sexuality or gender. As a surprising consequence of this, a rather
common word like “sex” (which can have both neutral and explicit meanings) is
completely unknown to a tokenizer that is trained on C4, since this word is fully
absent from the corpus.

• There are many occurrences of copyright violation in BookCorpus, and probably
in other large-scale datasets as well.2

• There is genre skew toward “romance” novels in BookCorpus.

These discoveries might not be incompatible with downstream usage of the models
trained on these corpora. For instance, the strong overrepresentation of romance
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novels in BookCorpus is probably acceptable if the model is intended to be used as a
romance novel writing tool or for a building a game.

Let’s illustrate the notion of a model being skewed by the data by comparing text gen‐
erations from GPT and GPT-2. GPT was mostly trained on BookCorpus, while
GPT-2 was trained on web pages, blogs, and news articles linked from Reddit. We’ll
compare similar-sized versions of both models on the same prompt, so that the main
difference is the pretraining dataset, and we’ll use the text-generation pipeline to
investigate the model outputs:

from transformers import pipeline, set_seed

generation_gpt = pipeline("text-generation", model="openai-gpt")
generation_gpt2 = pipeline("text-generation", model="gpt2")

Next, let’s create a simple function to count the number of parameters in each model:

def model_size(model):
    return sum(t.numel() for t in model.parameters())

print(f"GPT  size: {model_size(generation_gpt.model)/1000**2:.1f}M parameters")
print(f"GPT2 size: {model_size(generation_gpt2.model)/1000**2:.1f}M parameters")

GPT  size: 116.5M parameters
GPT2 size: 124.4M parameters

The original GPT model is about the same size as the smallest GPT-2 model. Now we
can generate three different completions from each model, each with the same input
prompt:

def enum_pipeline_ouputs(pipe, prompt, num_return_sequences):
    out = pipe(prompt, num_return_sequences=num_return_sequences,
               clean_up_tokenization_spaces=True)
    return "\n".join(f"{i+1}." + s["generated_text"] for i, s in enumerate(out))

prompt = "\nWhen they came back"
print("GPT completions:\n" + enum_pipeline_ouputs(generation_gpt, prompt, 3))
print("")
print("GPT-2 completions:\n" + enum_pipeline_ouputs(generation_gpt2, prompt, 3))

GPT completions:
1.
When they came back.
 " we need all we can get, " jason said once they had settled into the back of
the truck without anyone stopping them. " after getting out here, it 'll be up
to us what to find. for now
2.
When they came back.
 his gaze swept over her body. he 'd dressed her, too, in the borrowed clothes
that she 'd worn for the journey.
 " i thought it would be easier to just leave you there. " a woman like
3.
When they came back to the house and she was sitting there with the little boy.
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 " don't be afraid, " he told her. she nodded slowly, her eyes wide. she was so
lost in whatever she discovered that tom knew her mistake

GPT-2 completions:
1.
When they came back we had a big dinner and the other guys went to see what
their opinion was on her. I did an hour and they were happy with it.
2.
When they came back to this island there had been another massacre, but he could
not help but feel pity for the helpless victim who had been left to die, and
that they had failed that day. And so was very, very grateful indeed.
3.
When they came back to our house after the morning, I asked if she was sure. She
said, "Nope." The two kids were gone that morning. I thought they were back to
being a good friend.

When Dost

By just sampling a handful of outputs from both models we can already see the dis‐
tinctive “romance” skew in GPT generation, which will typically imagine a dialogue
with a romantic interaction between a woman and a man. On the other hand, GPT-2
was trained on webtext linked to and from Reddit articles and mostly adopts a neu‐
tral “they” in its generations, which contain “blog-like” or adventure-related elements.

In general, any model trained on a dataset will reflect the language bias and over- or
underrepresentation of populations and events in its training data. These biases in the
behavior of the model are important to take into consideration with regard to the tar‐
get audience interacting with the model; for some useful guidelines, we refer you to a
paper by Google that provides a framework for dataset development.3

This brief introduction should give you an idea of the difficult challenges you face
when creating large text corpora. With these in mind, let’s now take a look at creating
our own dataset!

Building a Custom Code Dataset
To simplify the task a bit, we’ll focus on building a code generation model for the
Python programming language only.4 The first thing we’ll need is a large pretraining
corpus consisting of Python source code. Fortunately, there is a natural resource that
every software engineer knows: GitHub! The famous code-sharing website hosts
terabytes of code repositories that are openly accessible and can be downloaded and
used according to their respective licenses. At the time of this book’s writing, GitHub

Large Datasets and Where to Find Them | 303

https://arxiv.org/abs/2010.13561
https://arxiv.org/abs/2010.13561


5 M.-A. Lachaux et al., “Unsupervised Translation of Programming Languages”, (2020).

hosts more than 20 million code repositories. Many of them are small or test reposi‐
tories created by users for learning, future side projects, or testing purposes.

GitHub repositories can be accessed in two main ways:

• Via the GitHub REST API, like we saw in Chapter 9 when we downloaded all the
GitHub issues of the  Transformers repository

• Via public dataset inventories like Google BigQuery

Since the REST API is rate limited and we need a lot data for our pretraining corpus,
we’ll use Google BigQuery to extract all the Python repositories. The bigquery-
public-data.github_repos.contents table contains copies of all ASCII files that are
less than 10 MB in size. Projects also need to be open source to be included, as deter‐
mined by GitHub’s License API.

The Google BigQuery dataset doesn’t contain star or downstream
usage information. For those attributes, we can use the GitHub
REST API or a service like Libraries.io that monitors open source
packages. Indeed, a team from GitHub recently released a dataset
called CodeSearchNet that filtered repositories used in at least one
downstream task using information from Libraries.io.

Let’s have a look at what it takes to create our code dataset with Google BigQuery.

Creating a dataset with Google BigQuery
We’ll begin by extracting all the Python files in GitHub public repositories from the
snapshot on Google BigQuery. For the sake of reproducibility and in case the policy
around free usage of BigQuery changes in the future, we will also share this dataset
on the Hugging Face Hub. The steps to export these files are adapted from the Trans‐
Coder implementation and are as follows:5

1. Create a Google Cloud account (a free trial should be sufficient).
2. Create a Google BigQuery project under your account.
3. In this project, create a dataset.
4. In this dataset, create a table where the results of the SQL request will be stored.
5. Prepare and run the following SQL query on the github_repos (to save the

query results, select More > Query Options, check the “Set a destination table for
query results” box, and specify the table name):
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SELECT
  f.repo_name, f.path, c.copies, c.size, c.content, l.license
FROM
  `bigquery-public-data.github_repos.files` AS f
JOIN
  `bigquery-public-data.github_repos.contents` AS c
ON
  f.id = c.id
JOIN
  `bigquery-public-data.github_repos.licenses` AS l
ON
  f.repo_name = l.repo_name
WHERE
  NOT c.binary
  AND ((f.path LIKE '%.py')
    AND (c.size BETWEEN 1024
      AND 1048575))

This command processes about 2.6 TB of data to extract 26.8 million files. The result
is a dataset of about 50 GB of compressed JSON files, each containing the source code
of Python files. We filtered to remove empty files and small files such as __init__.py
that don’t contain much useful information. We also filtered out files larger than 1
MB, and we downloaded the licenses for all the files so we can filter the training data
based on licenses if we want later on.

Next, we’ll download the results to our local machine. If you try this at home, make
sure you have good bandwidth available and at least 50 GB of free disk space. The
easiest way to get the resulting table to your local machine is to follow this two-step
process:

1. Export your results to Google Cloud:
a. Create a bucket and a folder in Google Cloud Storage (GCS).
b. Export your table to this bucket by selecting Export > Export to GCS, with an

export format of JSON and gzip compression.
2. To download the bucket to your machine, use the gsutil library:

a. Install gsutil with pip install gsutil.
b. Configure gsutil with your Google account: gsutil config.
c. Copy your bucket on your machine:

$ gsutil -m -o
"GSUtil:parallel_process_count=1" cp -r gs://<name_of_bucket>

Alternatively, you can directly download the dataset from the Hugging Face Hub with
the following command:
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$ git clone https://huggingface.co/datasets/transformersbook/codeparrot

To Filter the Noise or Not?
Anybody can create a GitHub repository, so the quality of the projects varies. There
are some conscious choices to be made regarding how we want the system to perform
in a real-world setting. Having some noise in the training dataset will make our sys‐
tem more robust to noisy inputs at inference time, but will also make its predictions
more random. Depending on the intended use and whole system integration, you
may choose more or less noisy data and add pre- and postfiltering operations.

For the educational purposes of the present chapter and to keep the data preparation
code concise, we will not filter according to stars or usage and will just grab all the
Python files in the GitHub BigQuery dataset. Data preparation, however, is a crucial
step, and you should make sure you clean up your dataset as much as possible. In our
case a few things to consider are whether to balance the programming languages in
the dataset; filter low-quality data (e.g., via GitHub stars or references from other
repos); remove duplicated code samples; take copyright information into account;
investigate the language used in documentation, comments, or docstrings; and
remove personal identifying information such as passwords or keys.

Working with a 50 GB dataset can be challenging; it requires sufficient disk space,
and one must be careful not to run out of RAM. In the following section, we’ll have a
look how  Datasets helps deal with these constraints of working with large datasets
on small machines.

Working with Large Datasets
Loading a very large dataset is often a challenging task, in particular when the data is
larger than your machine’s RAM. For a large-scale pretraining dataset, this is a very
common situation. In our example, we have 50 GB of compressed data and about 200
GB of uncompressed data, which is difficult to extract and load into the RAM mem‐
ory of a standard-sized laptop or desktop computer.

Thankfully,  Datasets has been designed from the ground up to overcome this
problem with two specific features that allow you to set yourself free from RAM and
hard drive space limitations: memory mapping and streaming.

Memory mapping
To overcome RAM limitations,  Datasets uses a mechanism for zero-copy and zero-
overhead memory mapping that is activated by default. Basically, each dataset is
cached on the drive in a file that is a direct reflection of the content in RAM memory.
Instead of loading the dataset in RAM,  Datasets opens a read-only pointer to this
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file and uses it as a substitute for RAM, basically using the hard drive as a direct
extension of the RAM memory.

Up to now we have mostly used  Datasets to access remote datasets on the Hugging
Face Hub. Here, we will directly load our 50 GB of compressed JSON files that we
have stored locally in the codeparrot repository. Since the JSON files are com‐
pressed, we first need to decompress them, which  Datasets takes care of for us. Be
careful, because this requires about 180 GB of free disk space! However, it will use
almost no RAM. By setting delete_extracted=True in the dataset’s downloading
configuration, we can make sure that we delete all the files we don’t need anymore as
soon as possible:

from datasets import load_dataset, DownloadConfig

download_config = DownloadConfig(delete_extracted=True)
dataset = load_dataset("./codeparrot", split="train",
                       download_config=download_config)

Under the hood,  Datasets extracted and read all the compressed JSON files by
loading them in a single optimized cache file. Let’s see how big this dataset is once
loaded:

import psutil

print(f"Number of python files code in dataset : {len(dataset)}")
ds_size = sum(os.stat(f["filename"]).st_size for f in dataset.cache_files)
# os.stat.st_size is expressed in bytes, so we convert to GB
print(f"Dataset size (cache file) : {ds_size / 2**30:.2f} GB")
# Process.memory_info is expressed in bytes, so we convert to MB
print(f"RAM used: {psutil.Process(os.getpid()).memory_info().rss >> 20} MB")

Number of python files code in dataset : 18695559
Dataset size (cache file) : 183.68 GB
RAM memory used: 4924 MB

As we can see, the dataset is much larger than our typical RAM memory, but we can
still load and access it, and we’re actually using a very limited amount of memory.

You may wonder if this will make our training I/O-bound. In practice, NLP data is
usually very lightweight to load in comparison to the model processing computa‐
tions, so this is rarely an issue. In addition, the zero-copy/zero-overhead format uses
Apache Arrow under the hood, which makes it very efficient to access any element.
Depending on the speed of your hard drive and the batch size, iterating over the
dataset can typically be done at a rate of a few tenths of a GB/s to several GB/s. This is
great, but what if you can’t free enough disk space to store the full dataset locally?
Everybody knows the feeling of helplessness when you get a full disk warning and
need to painfully try to reclaim a few GB by looking for hidden files to delete. Luckily,
you don’t need to store the full dataset locally if you use the streaming feature of

 Datasets!
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Streaming
Some datasets (reaching up to 1 TB or more) will be difficult to fit even on a standard
hard drive. In this case, an alternative to scaling up the server you are using is to
stream the dataset. This is also possible with  Datasets for a number of compressed
or uncompressed file formats that can be read line by line, like JSON Lines, CSV, or
text (either raw or zip, gzip, or zstandard compressed). Let’s load our dataset directly
from the compressed JSON files instead of creating a cache file from them:

streamed_dataset = load_dataset('./codeparrot', split="train", streaming=True)

As you’ll see, loading the dataset is instantaneous! In streaming mode, the com‐
pressed JSON files will be opened and read on the fly. Our dataset is now an Iterable
Dataset object. This means that we cannot access random elements of it, like
streamed_dataset[1264], but we need to read it in order, for instance with
next(iter(streamed_dataset)). It’s still possible to use methods like shuffle(), but
these will operate by fetching a buffer of examples and shuffling within this buffer
(the size of the buffer is adjustable). When several files are provided as raw files (like
our 184 files here), shuffle() will also randomize the order of files for the iteration.

The samples of a streamed dataset are identical to the samples of a nonstreamed data‐
set, as we can see:

iterator = iter(streamed_dataset)

print(dataset[0] == next(iterator))
print(dataset[1] == next(iterator))

True
True

The main interest of using a streaming dataset is that loading this dataset will not cre‐
ate a cache file on the drive or require any (significant) RAM memory. The original
raw files are extracted and read on the fly when a new batch of examples is requested,
and only that batch is loaded in memory. This reduces the memory footprint of our
dataset from 180 GB to 50 GB. But we can take this one step further—instead of
pointing to the local dataset we can reference the dataset on the Hub, and then
directly download samples without downloading the raw files locally:

remote_dataset = load_dataset('transformersbook/codeparrot', split="train",
                              streaming=True)

This dataset behaves exactly like the previous one, but behind the scenes downloads
the examples on the fly. With such a setup, we can then use arbitrarily large datasets
on an (almost) arbitrarily small server. Let’s push our dataset with a train and valida‐
tion split to the Hugging Face Hub and access it with streaming.
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Adding Datasets to the Hugging Face Hub
Pushing our dataset to the Hugging Face Hub will allow us to:

• Easily access it from our training server.
• See how streaming datasets work seamlessly with datasets from the Hub.
• Share it with the community, including you, dear reader!

To upload the dataset, we first need to log in to our Hugging Face account by running
the following command in the terminal and providing the relevant credentials:

$ huggingface-cli login

This is equivalent to the notebook_login() helper function we used in previous
chapters. Once this is done, we can directly create a new dataset on the Hub and
upload the compressed JSON files. To simplify things, we will create two repositories:
one for the train split and one for the validation split. We can do this by running the
repo create command of the CLI as follows:

$ huggingface-cli repo create --type dataset --organization transformersbook \
codeparrot-train
$ huggingface-cli repo create --type dataset --organization transformersbook \
codeparrot-valid

Here we’ve specified that the repository should be a dataset (in contrast to the model
repositories used to store weights), along with the organization we’d like to store the
repositories under. If you’re running this code under your personal account, you can
omit the --organization flag. Next, we need to clone these empty repositories to our
local machine, copy the JSON files to them, and push the changes to the Hub. We will
take the last compressed JSON file out of the 184 we have as the validation file (i.e.,
roughly 0.5 percent of our dataset). Execute these commands to clone the repository
from the Hub to your local machine:

$ git clone https://huggingface.co/datasets/transformersbook/codeparrot-train
$ git clone https://huggingface.co/datasets/transformersbook/codeparrot-valid

Next, copy all but the last GitHub file as the training set:

$ cd codeparrot-train
$ cp ../codeparrot/*.json.gz .
$ rm ./file-000000000183.json.gz

Then commit the files and push them to the Hub:

$ git add .
$ git commit -m "Adding dataset files"
$ git push

Now, repeat the process for the validation set:
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$ cd ../codeparrot-valid
$ cp ../codeparrot/file-000000000183.json.gz .
$ mv ./file-000000000183.json.gz ./file-000000000183_validation.json.gz
$ git add .
$ git commit -m "Adding dataset files"
$ git push

The git add . step can take a couple of minutes since a hash of all the files is com‐
puted. Uploading all the files will also take a little while. Since this will enable us to
use streaming later in the chapter, however, this is not lost time, and this step will
allow us to go significantly faster in the rest of our experiments. Note that we added a
_validation suffix to the validation filename. This will enable us to load it later as a
validation split.

And that’s it! Our two splits of the dataset as well as the full dataset are now live on
the Hugging Face Hub at the following URLs:

• https://huggingface.co/datasets/transformersbook/codeparrot
• https://huggingface.co/datasets/transformersbook/codeparrot-train
• https://huggingface.co/datasets/transformersbook/codeparrot-valid

It’s good practice to add README cards that explain how the data‐
sets were created and provide as much useful information about
them as possible. A well-documented dataset is more likely to be
useful to other people, as well as your future self. You can read the

 Datasets README guide for a detailed description of how to
write good dataset documentation. You can also use the web editor
to modify your README cards directly on the Hub later.

Building a Tokenizer
Now that we have gathered and loaded our large dataset, let’s see how we can effi‐
ciently process the data to feed to our model. In the previous chapters we’ve used
tokenizers that accompanied the models we used. This made sense since these models
were pretrained using data passed through a specific preprocessing pipeline defined
in the tokenizer. When using a pretrained model, it’s important to stick with the same
preprocessing design choices selected for pretraining. Otherwise the model may be
fed out-of-distribution patterns or unknown tokens.

However, when we train a new model, using a tokenizer prepared for another dataset
can be suboptimal. Here are a few examples of the kinds of problems we might run
into when using an existing tokenizer:
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• The T5 tokenizer was trained on the C4 corpus that we encountered earlier, but
an extensive step of stopword filtering was used to create it. As a result, the T5
tokenizer has never seen common English words such as “sex.”

• The CamemBERT tokenizer was also trained on a very large corpus of text, but
only comprising French text (the French subset of the OSCAR corpus). As such,
it is unaware of common English words such “being.”

We can easily test these features of each tokenizer in practice:

from transformers import AutoTokenizer

def tok_list(tokenizer, string):
    input_ids = tokenizer(string, add_special_tokens=False)["input_ids"]
    return [tokenizer.decode(tok) for tok in input_ids]

tokenizer_T5 = AutoTokenizer.from_pretrained("t5-base")
tokenizer_camembert = AutoTokenizer.from_pretrained("camembert-base")

print(f'T5 tokens for "sex": {tok_list(tokenizer_T5,"sex")}')
print(f'CamemBERT tokens for "being": {tok_list(tokenizer_camembert,"being")}')

T5 tokens for "sex": ['', 's', 'ex']
CamemBERT tokens for "being": ['be', 'ing']

In many cases, splitting such short and common words into subparts will be ineffi‐
cient, since this will increase the input sequence length of the model (which has limi‐
ted context). Therefore, it’s important to be aware of the domain and preprocessing of
the dataset that was used to train the tokenizer. The tokenizer and model can encode
bias from the dataset that has an impact on the downstream behavior of the model.
To create an optimal tokenizer for our dataset, we thus need to train one ourselves.
Let’s see how this can be done.

Training a model involves starting from a given set of weights and
using backpropagation from an error signal on a designed objective
to minimize the loss of the model and find an optimal set of
weights for the model to perform the task defined by the training
objective. Training a tokenizer, on the other hand, does not involve
backpropagation or weights. It is a way to create an optimal map‐
ping from a string of text to a list of integers that can be ingested by
the model. In today’s tokenizers, the optimal string-to-integer con‐
version involves a vocabulary consisting of a list of atomic strings
and an associated method to convert, normalize, cut, or map a text
string into a list of indices with this vocabulary. This list of indices
is then the input for our neural network.
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The Tokenizer Model
As you saw in Chapter 4, the tokenizer is a processing pipeline consisting of four
steps: normalization, pretokenization, the tokenizer model, and postprocessing. The
part of the tokenizer pipeline that can be trained on data is the tokenizer model. As
we discussed in Chapter 2, there are several subword tokenization algorithms that can
be used, such as BPE, WordPiece, and Unigram.

BPE starts from a list of basic units (single characters) and creates a vocabulary by a
process of progressively creating new tokens formed by merging the most frequently
co-occurring basic units and adding them to the vocabulary. This process is reiterated
until a predefined vocabulary size is reached.

Unigram starts from the other end, by initializing its base vocabulary with all the
words in the corpus, and potential subwords. Then it progressively removes or splits
the less useful tokens to obtain a smaller and smaller vocabulary, until the target
vocabulary size is reached. WordPiece is a predecessor of Unigram, and its official
implementation was never open-sourced by Google.

The impact of these various algorithms on downstream performance varies depend‐
ing on the task, and overall it’s quite difficult to identify if one algorithm is clearly
superior to the others. Both BPE and Unigram have reasonable performance in most
cases, but let’s have a look at some aspects to consider when evaluating.

Measuring Tokenizer Performance
The optimality and performance of a tokenizer are challenging to measure in prac‐
tice. Some possible metrics include:

• Subword fertility, which calculates the average number of subwords produced per
tokenized word

• Proportion of continued words, which refers to the proportion of tokenized words
in a corpus that are split into at least two subtokens

• Coverage metrics like the proportion of unknown words or rarely used tokens in
a tokenized corpus

In addition, robustness to misspelling or noise is often estimated, as well as model
performance on such out-of-domain examples, as this strongly depends on the toke‐
nization process.

These measures give a set of different views on the tokenizer’s performance, but they
tend to ignore the interaction of the tokenizer with the model. For example, subword
fertility can be minimized by including all the possible words in the vocabulary, but
this will produce a very large vocabulary for the model.
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In the end, the performance of the various tokenization approaches is thus generally
best estimated by using the downstream performance of the model as the ultimate
metric. For instance, the good performance of early BPE approaches was demon‐
strated by showing improved performance on machine translation tasks by models
trained using these tokenizers and vocabularies instead of character- or word-based
tokenization.

Let’s see how we can build our own tokenizer optimized for Python code.

A Tokenizer for Python
We need a custom tokenizer for our use case: tokenizing Python code. The question
of pretokenization merits some discussion for programming languages. If we split on
whitespaces and remove them, we will lose all the indentation information, which in
Python is important for the semantics of the program (just think about while loops,
or if-then-else statements). On the other hand, line breaks are not meaningful and
can be added or removed without impact on the semantics. Similarly, splitting on
punctuation, like an underscore, which is used to compose a single variable name
from several subparts, might not make as much sense as it would in natural language.
Using a natural language pretokenizer for tokenizing code thus seems potentially sub‐
optimal.

Let’s see if there are any tokenizers in the collection provided on the Hub that might
be useful to us. We want a tokenizer that preserves spaces, so a good candidate could
be a byte-level tokenizer like the one from GPT-2. Let’s load this tokenizer and
explore its tokenization properties:

from transformers import AutoTokenizer

python_code = r"""def say_hello():
    print("Hello, World!")

# Print it
say_hello()
"""
tokenizer = AutoTokenizer.from_pretrained("gpt2")
print(tokenizer(python_code).tokens())

['def', 'Ġsay', '_', 'hello', '():', 'Ċ', 'Ġ', 'Ġ', 'Ġ', 'Ġprint', '("',
'Hello', ',', 'ĠWorld', '!"', ')', 'Ġ#', 'ĠPrint', 'Ġit', 'Ċ', 'Ċ', 'say', '_',
'hello', '()', 'Ċ']
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Python has a built-in tokenize module that splits Python code
strings into meaningful units (code operation, comments, indent
and dedent, etc.). One issue with using this approach is that this
pretokenizer is Python-based and as such is typically rather slow
and limited by the Python global interpreter lock (GIL). On the
other hand, most of the tokenizers in the  Transformers library
are provided by the  Tokenizers library and are coded in Rust.
The Rust tokenizers are many orders of magnitude faster to train
and to use, and we will thus likely want to use them given the size
of our corpus.

This is quite a strange output, so let’s try to understand what is happening here by
running the various submodules of the tokenizer’s pipeline. First let’s see what nor‐
malization is applied in this tokenizer:

print(tokenizer.backend_tokenizer.normalizer)

None

As we can see, the GPT-2 tokenizer uses no normalization. It works directly on
the raw Unicode inputs without any normalization steps. Let’s now take a look at the
pretokenization:

print(tokenizer.backend_tokenizer.pre_tokenizer.pre_tokenize_str(python_code))

[('def', (0, 3)), ('Ġsay', (3, 7)), ('_', (7, 8)), ('hello', (8, 13)), ('():',
(13, 16)), ('ĊĠĠĠ', (16, 20)), ('Ġprint', (20, 26)), ('("', (26, 28)), ('Hello',
(28, 33)), (',', (33, 34)), ('ĠWorld', (34, 40)), ('!")', (40, 43)), ('Ġ#', (43,
45)), ('ĠPrint', (45, 51)), ('Ġit', (51, 54)), ('Ċ', (54, 55)), ('Ċ', (55, 56)),
('say', (56, 59)), ('_', (59, 60)), ('hello', (60, 65)), ('()', (65, 67)), ('Ċ',
(67, 68))]

What are all these Ġ symbols, and what are the numbers accompanying the tokens?
Let’s explain both and see if we can understand better how this tokenizer works.

Let’s start with the numbers.  Tokenizers has a very useful feature for switching
between strings and tokens, called offset tracking. All the operations on the input
string are tracked so that it’s possible to know exactly what part of the input string a
token after tokenization corresponds to. These numbers simply indicate where in the
original string each token comes from; for instance, the word 'hello' in the first line
corresponds to the characters 8 to 13 in the original string. If some characters are
removed in a normalization step, we are thus still able to associate each token with
the respective part in the original string.

The other curious feature of the tokenized text is the odd-looking characters, such as
Ċ and Ġ. Byte-level means that this tokenizer works on bytes instead of Unicode char‐
acters. Each Unicode character is composed of between 1 and 4 bytes, depending on
the character. The nice thing about bytes is that while there are 143,859 Unicode
characters in the Unicode alphabet, there are only 256 elements in the byte alphabet,
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6 L. Xue et al., “ByT5: Towards a Token-Free Future with Pre-Trained Byte-to-Byte Models”, (2021).

and you can express each Unicode character as a sequence of these bytes. If we work
on bytes we can thus express all the strings composed from the UTF-8 world as
longer strings in this alphabet of 256 values. That is, we can have a model using an
alphabet of only 256 words and be able to process any Unicode string. Let’s have a
look at what the byte representations of some characters look like:

a, e = u"a", u"€"
byte = ord(a.encode("utf-8"))
print(f'`{a}` is encoded as `{a.encode("utf-8")}` with a single byte: {byte}')
byte = [ord(chr(i)) for i in e.encode("utf-8")]
print(f'`{e}` is encoded as `{e.encode("utf-8")}` with three bytes: {byte}')

`a` is encoded as `b'a'` with a single byte: 97
`€` is encoded as `b'\xe2\x82\xac'` with three bytes: [226, 130, 172]

At this point you might wonder: why work on a byte level? Think back to our discus‐
sion in Chapter 2 about the trade-offs between character and word tokens. We could
decide to build our vocabulary from the 143,859 Unicode characters, but we would
also like to include words—i.e., combinations of Unicode characters—in our vocabu‐
lary, so this (already very large) size is only a lower bound for the total size of the
vocabulary. This will make our model’s embedding layer very large because it compri‐
ses one vector for each vocabulary token.

On the other extreme, if we only use the 256 byte values as our vocabulary, the input
sequences will be segmented in many small pieces (each byte constituting the Uni‐
code characters), and as such our model will have to work on long inputs and spend
significant compute power on reconstructing Unicode characters from their separate
bytes, and then words from these characters. See the paper accompanying the ByT5
model release for a detailed study of this overhead.6

A middle-ground solution is to construct a medium-sized vocabulary by extending
the 256-word vocabulary with the most common combinations of bytes. This is the
approach taken by the BPE algorithm. The idea is to progressively construct a
vocabulary of a predefined size by creating new vocabulary tokens through iteratively
merging the most frequently co-occurring pair of tokens in the vocabulary. For
instance, if t and h occur very frequently together, like in English, we’ll add a token th
to the vocabulary to model this pair of tokens instead of keeping them separated. The
t and h tokens are kept in the vocabulary to tokenize instances where they do not
occur together. Starting from a basic vocabulary of elementary units, we can then
model any string efficiently.
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7 P. Gage, “A New Algorithm for Data Compression,” The C Users Journal 12, no. 2 (1994): 23–38, https://
dx.doi.org/10.14569/IJACSA.2012.030803.

Be careful not to confuse the “byte” in “Byte-Pair Encoding” with
the “byte” in “byte-level.” The name Byte-Pair Encoding comes
from a data compression technique proposed by Philip Gage in
1994, originally operating on bytes.7 Unlike what this name might
indicate, standard BPE algorithms in NLP typically operate on Uni‐
code strings rather than bytes (although there is a new type of BPE
that specifically works on bytes, called byte-level BPE). If we read
our Unicode strings in bytes we can thus reuse a simple BPE sub‐
word splitting algorithm.

There is just one issue when using a typical BPE algorithm in NLP. These algorithms
are designed to work with clean Unicode string as inputs, not bytes, and expect regu‐
lar ASCII characters in the inputs, without spaces or control characters. But in the
Unicode characters corresponding to the 256 first bytes, there are many control char‐
acters (newline, tab, escape, line feed, and other nonprintable characters). To over‐
come this problem, the GPT-2 tokenizer first maps all the 256 input bytes to Unicode
strings that can easily be digested by the standard BPE algorithms—that is, we will
map our 256 elementary values to Unicode strings that all correspond to standard
printable Unicode characters.

It’s not very important that these Unicode characters are each encoded with 1 byte or
more; what is important is that we have 256 single values at the end, forming our base
vocabulary, and that these 256 values are correctly handled by our BPE algorithm.
Let’s see some examples of this mapping with the GPT-2 tokenizer. We can access the
entire mapping as follows:

from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode

byte_to_unicode_map = bytes_to_unicode()
unicode_to_byte_map = dict((v, k) for k, v in byte_to_unicode_map.items())
base_vocab = list(unicode_to_byte_map.keys())

print(f'Size of our base vocabulary: {len(base_vocab)}')
print(f'First element: `{base_vocab[0]}`, last element: `{base_vocab[-1]}`')

Size of our base vocabulary: 256
First element: `!`, last element: `Ń`

And we can take a look at some common values of bytes and associated mapped Uni‐
code characters in Table 10-1.
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Table 10-1. Examples of character mappings in BPE

Description Character Bytes Mapped bytes

Regular characters `a` and `?` 97 and 63 `a` and `?`

A nonprintable control character (carriage return) `U+000D` 13 `č`

A space ` ` 32 `Ġ`

A nonbreakable space `\xa0` 160 `ł`

A newline character `\n` 10 `Ċ`

We could have used a more explicit conversion, like mapping newlines to a NEWLINE
string, but BPE algorithms are typically designed to work on characters. For this rea‐
son, keeping one Unicode character for each byte character is easier to handle with an
out-of-the-box BPE algorithm. Now that we have been introduced to the dark magic
of Unicode encodings, we can understand our tokenization conversion a bit better:

print(tokenizer.backend_tokenizer.pre_tokenizer.pre_tokenize_str(python_code))

[('def', (0, 3)), ('Ġsay', (3, 7)), ('_', (7, 8)), ('hello', (8, 13)), ('():',
(13, 16)), ('ĊĠĠĠ', (16, 20)), ('Ġprint', (20, 26)), ('("', (26, 28)), ('Hello',
(28, 33)), (',', (33, 34)), ('ĠWorld', (34, 40)), ('!")', (40, 43)), ('Ġ#', (43,
45)), ('ĠPrint', (45, 51)), ('Ġit', (51, 54)), ('Ċ', (54, 55)), ('Ċ', (55, 56)),
('say', (56, 59)), ('_', (59, 60)), ('hello', (60, 65)), ('()', (65, 67)), ('Ċ',
(67, 68))]

We can recognize the newlines, which as we now know are mapped to Ċ, and the
spaces, mapped to Ġ. We also see that:

• Spaces, and in particular consecutive spaces, are conserved (for instance, the
three spaces in 'ĊĠĠĠ').

• Consecutive spaces are considered as a single word.
• Each space preceding a word is attached to and considered a part of the subse‐

quent word (e.g., in 'Ġsay').

Let’s now experiment with the BPE model. As we’ve mentioned, it’s in charge of split‐
ting the words into subunits until all subunits belong to the predefined vocabulary.

The vocabulary of our GPT-2 tokenizer comprises 50,257 words:

• The base vocabulary with the 256 values of the bytes
• 50,000 additional tokens created by repeatedly merging the most commonly co-

occurring tokens
• A special character added to the vocabulary to represent document boundaries

We can easily check that by looking at the length attribute of the tokenizer:

print(f"Size of the vocabulary: {len(tokenizer)}")
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Size of the vocabulary: 50257

Running the full pipeline on our input code gives us the following output:

print(tokenizer(python_code).tokens())

['def', 'Ġsay', '_', 'hello', '():', 'Ċ', 'Ġ', 'Ġ', 'Ġ', 'Ġprint', '("',
'Hello', ',', 'ĠWorld', '!"', ')', 'Ġ#', 'ĠPrint', 'Ġit', 'Ċ', 'Ċ', 'say', '_',
'hello', '()', 'Ċ']

As we can see, the BPE tokenizer keeps most of the words but will split the multiple
spaces of our indentation into several consecutive spaces. This happens because this
tokenizer is not specifically trained on code, but mostly on texts where consecutive
spaces are rare. The BPE model thus doesn’t include a specific token in the vocabu‐
lary for indentation. This is a case where the tokenizer model is poorly suited for the
dataset’s domain. As we discussed earlier, the solution is to retrain the tokenizer on
the target corpus. So let’s get to it!

Training a Tokenizer
Let’s retrain our byte-level BPE tokenizer on a slice of our corpus to get a vocabulary
better adapted to Python code. Retraining a tokenizer provided by  Transformers is
simple. We just need to:

• Specify our target vocabulary size.
• Prepare an iterator to supply lists of input strings to process to train the tokeniz‐

er’s model.
• Call the train_new_from_iterator() method.

Unlike deep learning models, which are often expected to memorize a lot of specific
details from the training corpus, tokenizers are really just trained to extract the main
statistics. In a nutshell, the tokenizer is just trained to know which letter combina‐
tions are the most frequent in our corpus.

Therefore, you don’t necessarily need to train your tokenizer on a very large corpus;
the corpus just needs to be representative of your domain and big enough for the
tokenizer to extract statistically significant measures. But depending on the vocabu‐
lary size and the exact texts in the corpus, the tokenizer can end up storing
unexpected words. We can see this, for instance, when looking at the longest words in
the vocabulary of the GPT-2 tokenizer:

tokens = sorted(tokenizer.vocab.items(), key=lambda x: len(x[0]), reverse=True)
print([f'{tokenizer.convert_tokens_to_string(t)}' for t, _ in tokens[:8]]);

['ÃÂÃÂÃÂÃÂÃÂÃÂÃÂÃÂÃÂÃÂÃÂÃÂÃÂÃÂÃÂÃÂÃÂÃÂÃÂÃÂÃÂÃÂÃÂÃÂÃÂÃÂÃÂÃÂÃÂÃÂÃÂÃÂ', '
=================================================================', '
----------------------------------------------------------------
',
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'................................................................',
'ÃÂÃÂÃÂÃÂÃÂÃÂÃÂÃÂÃÂÃÂÃÂÃÂÃÂÃÂÃÂÃÂ',
'
----------------------------------------------------------------
',
'================================================================',
'________________________________________________________________']

These tokens look like separator lines that are likely to be used on forums. This
makes sense since GPT-2 was trained on a corpus centered around Reddit. Now let’s
have a look at the last words that were added to the vocabulary, and thus the least
frequent ones:

tokens = sorted(tokenizer.vocab.items(), key=lambda x: x[1], reverse=True)
print([f'{tokenizer.convert_tokens_to_string(t)}' for t, _ in tokens[:12]]);

['<|endoftext|>', ' gazed', ' informants', ' Collider', ' regress', 'ominated',
' amplification', 'Compar', '..."', ' (/', 'Commission', ' Hitman']

The first token, <|endoftext|>, is the special token used to specify the end of a text
sequence and was added after the BPE vocabulary was built. For each of these tokens
our model will have to learn an associated word embedding, and we probably don’t
want the embedding matrix to contain too many noisy words. Also note how some
very time- and space-specific knowledge of the world (e.g., proper nouns like Hitman
and Commission) is embedded at a very low level in our modeling approach by these
words being granted separate tokens with associated vectors in the vocabulary. The
creation of such specific tokens by a BPE tokenizer can also be an indication that the
target vocabulary size is too large or that the corpus contains idiosyncratic tokens.

Let’s train a fresh tokenizer on our corpus and examine its learned vocabulary. Since
we just need a corpus reasonably representative of our dataset statistics, let’s select
about 1–2 GB of data, or about 100,000 documents from our corpus:

from tqdm.auto import tqdm

length = 100000
dataset_name = 'transformersbook/codeparrot-train'
dataset = load_dataset(dataset_name, split="train", streaming=True)
iter_dataset = iter(dataset)

def batch_iterator(batch_size=10):
    for _ in tqdm(range(0, length, batch_size)):
        yield [next(iter_dataset)['content'] for _ in range(batch_size)]

new_tokenizer = tokenizer.train_new_from_iterator(batch_iterator(),
                                                  vocab_size=12500,
                                                  initial_alphabet=base_vocab)

Let’s investigate the first and last words created by our BPE algorithm to see how rele‐
vant our vocabulary is. We skip the 256 byte tokens and look at the first tokens added
thereafter:
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tokens = sorted(new_tokenizer.vocab.items(), key=lambda x: x[1], reverse=False)
print([f'{tokenizer.convert_tokens_to_string(t)}' for t, _ in tokens[257:280]]);

['  ', '    ', '   ', '        ', 'se', 'in', '       ', 're', 'on', 'te', '\n
', '\n        ', 'or', 'st', 'de', '\n   ', 'th', 'le', ' =', 'lf', 'self',
'me', 'al']

Here we can see various standard levels of indentation and whitespace tokens, as well
as short common Python keywords like self, or, and in. This is a good sign that our
BPE algorithm is working as intended. Now let’s check out the last words:

print([f'{new_tokenizer.convert_tokens_to_string(t)}' for t,_ in tokens[-12:]]);

[' capt', ' embedded', ' regarding', 'Bundle', '355', ' recv', ' dmp', ' vault',
' Mongo', ' possibly', 'implementation', 'Matches']

Here there are still some relatively common words, like recv, as well as some more
noisy words probably coming from the comments.

We can also tokenize our simple example of Python code to see how our tokenizer is
behaving on a simple example:

print(new_tokenizer(python_code).tokens())

['def', 'Ġs', 'ay', '_', 'hello', '():', 'ĊĠĠĠ', 'Ġprint', '("', 'Hello', ',',
'ĠWor', 'ld', '!")', 'Ġ#', 'ĠPrint', 'Ġit', 'Ċ', 'Ċ', 's', 'ay', '_', 'hello',
'()', 'Ċ']

Even though they are not code keywords, it’s a little annoying to see common English
words like World or say being split by our tokenizer, since we’d expect them to occur
rather frequently in the corpus. Let’s check if all the Python reserved keywords are in
the vocabulary:

import keyword

print(f'There are in total {len(keyword.kwlist)} Python keywords.')
for keyw in keyword.kwlist:
    if keyw not in new_tokenizer.vocab:
        print(f'No, keyword `{keyw}` is not in the vocabulary')

There are in total 35 Python keywords.
No, keyword `await` is not in the vocabulary
No, keyword `finally` is not in the vocabulary
No, keyword `nonlocal` is not in the vocabulary

It appears that several quite frequent keywords, like finally, are not in the vocabu‐
lary either. Let’s try building a larger vocabulary using a larger sample of our dataset.
For instance, we can build a vocabulary of 32,768 words (multiples of 8 are better for
some efficient GPU/TPU computations) and train the tokenizer on a twice as large
slice of our corpus:

length = 200000
new_tokenizer_larger = tokenizer.train_new_from_iterator(batch_iterator(),
    vocab_size=32768, initial_alphabet=base_vocab)
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We don’t expect the most frequent tokens to change much when adding more docu‐
ments, but let’s look at the last tokens:

tokens = sorted(new_tokenizer_larger.vocab.items(), key=lambda x: x[1],
                reverse=False)
print([f'{tokenizer.convert_tokens_to_string(t)}' for t, _ in tokens[-12:]]);

['lineEdit', 'spik', ' BC', 'pective', 'OTA', 'theus', 'FLUSH', ' excutils',
'00000002', ' DIVISION', 'CursorPosition', ' InfoBar']

A brief inspection doesn’t show any regular programming keywords here, which is
promising. Let’s try tokenizing our sample code example with the new larger
tokenizer:

print(new_tokenizer_larger(python_code).tokens())

['def', 'Ġsay', '_', 'hello', '():', 'ĊĠĠĠ', 'Ġprint', '("', 'Hello', ',',
'ĠWorld', '!")', 'Ġ#', 'ĠPrint', 'Ġit', 'Ċ', 'Ċ', 'say', '_', 'hello', '()',
'Ċ']

Here also the indents are conveniently kept in the vocabulary, and we see that com‐
mon English words like Hello, World, and say are also included as single tokens. This
seems more in line with our expectations of the data the model may see in the down‐
stream task. Let’s investigate the common Python keywords, as we did before:

for keyw in keyword.kwlist:
    if keyw not in new_tokenizer_larger.vocab:
        print(f'No, keyword `{keyw}` is not in the vocabulary')

No, keyword `nonlocal` is not in the vocabulary

We are still missing the nonlocal keyword, but it’s also rarely used in practice as it
makes the syntax more complex. Keeping it out of the vocabulary seems reasonable.
After this manual inspection, our larger tokenizer seems well adapted for our task—
but as we mentioned earlier, objectively evaluating the performance of a tokenizer is a
challenging task without measuring the model’s performance. We will proceed with
this one and train a model to see how well it works in practice.

You can easily verify that the new tokenizer is about twice as effi‐
cient than the standard GPT-2 tokenizer by comparing the
sequence lengths of tokenized code examples. Our tokenizer uses
approximately half as many tokens as the existing one to encode a
text, which gives us twice the effective model context for free.
When we train a new model with the new tokenizer on a context
window of size 1,024 it is equivalent to training the same model
with the old tokenizer on a context window of size 2,048, with the
advantage of being much faster and more memory efficient.
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Saving a Custom Tokenizer on the Hub
Now that our tokenizer is trained, we should save it. The simplest way to save it and
be able to access it from anywhere later is to push it to the Hugging Face Hub. This
will be especially useful later, when we use a separate training server.

To create a private model repository and save our tokenizer in it as a first file, we can
directly use the push_to_hub() method of the tokenizer. Since we already authentica‐
ted our account with huggingface-cli login, we can simply push the tokenizer as
follows:

model_ckpt = "codeparrot"
org = "transformersbook"
new_tokenizer_larger.push_to_hub(model_ckpt, organization=org)

If you don’t want to push to an organization, you can simply omit the organization
argument. This will create a repository in your namespace named codeparrot, which
anyone can then load by running:

reloaded_tokenizer = AutoTokenizer.from_pretrained(org + "/" + model_ckpt)
print(reloaded_tokenizer(python_code).tokens())

['def', 'Ġsay', '_', 'hello', '():', 'ĊĠĠĠ', 'Ġprint', '("', 'Hello', ',',
'ĠWorld', '!")', 'Ġ#', 'ĠPrint', 'Ġit', 'Ċ', 'Ċ', 'say', '_', 'hello', '()',
'Ċ']

The tokenizer loaded from the Hub behaves exactly as we just saw. We can also inves‐
tigate its files and saved vocabulary on the Hub. For reproducibility, let’s save our
smaller tokenizer as well:

new_tokenizer.push_to_hub(model_ckpt+ "-small-vocabulary", organization=org)

This was a deep dive into building a tokenizer for a specific use case. Next, we will
finally create a new model and train it from scratch.
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Training a Model from Scratch
Here’s the part you’ve probably been waiting for: the model training. In this section
we’ll decide which architecture works best for the task, initialize a fresh model
without pretrained weights, set up a custom data loading class, and create a scalable
training loop. In the grand finale we will train small and large GPT-2 models with 111
million and 1.5 billion parameters, respectively! But let’s not get ahead ourselves.
First, we need to decide which architecture is best suited for code autocompletion.

In this section we will implement a longer than usual script to train
a model on a distributed infrastructure. Therefore, you should not
run each code snippet independently, but instead download the
script provided in the  Transformers repository. Follow the
accompanying instructions to execute the script with  Accelerate
on your hardware.

A Tale of Pretraining Objectives
Now that we have access to a large-scale pretraining corpus and an efficient tokenizer,
we can start thinking about how to pretrain a transformer model. With such a large
codebase consisting of code snippets like the one shown in Figure 10-1, we can tackle
several tasks. Which one we choose will influence our choice of pretraining objec‐
tives. Let’s have a look at three common tasks.

Figure 10-1. An example of a Python function that could be found in our dataset

Causal language modeling
A natural task with textual data is to provide a model with the beginning of a code
sample and ask it to generate possible completions. This is a self-supervised training
objective in which we can use the dataset without annotations. This should ring a
bell: it’s the causal language modeling task we encountered in Chapter 5. A directly
related downstream task is code autocompletion, so we’ll definitely put this model on
the shortlist. A decoder-only architecture such as the GPT family of models is usually
best suited for this task, as shown in Figure 10-2.
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Figure 10-2. In causal language modeling, the future tokens are masked and the model
has to predict them; typically a decoder model such as GPT is used for such a task

Masked language modeling
A related but slightly different task is to provide a model with a noisy code sample,
for instance with a code instruction replaced by a random or masked word, and ask it
to reconstruct the original clean sample, as illustrated in Figure 10-3. This is also a
self-supervised training objective and is commonly called masked language modeling
or the denoising objective. It’s harder to think about a downstream task directly related
to denoising, but denoising is generally a good pretraining task to learn general rep‐
resentations for later downstream tasks. Many of the models that we have used in the
previous chapters (like BERT and XLM-RoBERTa) are pretrained in that way. Train‐
ing a masked language model on a large corpus can thus be combined with fine-
tuning the model on a downstream task with a limited number of labeled examples.

Figure 10-3. In masked language modeling some of the input tokens are either masked or
replaced, and the model’s task is to predict the original tokens; this is the architecture
underlying the encoder branch of transformer models

Sequence-to-sequence training
An alternative task is to use a heuristic like regular expressions to separate comments
or docstrings from code and build a large-scale dataset of (code, comments) pairs that
can be used as an annotated dataset. The training task is then a supervised training
objective in which one category (code or comment) is used as input for the model
and the other category (comment or code) is used as labels. This is a case of super‐
vised learning with (input, labels) pairs, as highlighted in Figure 10-4. With a large,
clean, and diverse dataset as well as a model with sufficient capacity, we can try to
train a model that learns to transcript comments in code or vice versa. A downstream
task directly related to this supervised training task is then documentation generation
from code or code generation from documentation, depending on how we set our
input/outputs. In this setting a sequence is translated into another sequence, which is
where encoder-decoder architectures such as T5, BART, and PEGASUS shine.
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Figure 10-4. Using an encoder-decoder architecture for a sequence-to-sequence task
where the inputs are split into comment/code pairs using heuristics: the model gets one
element as input and needs to generate the other one

Since we want to build a code autocompletion model, we’ll select the first objective
and choose a GPT architecture for the task. So let’s initialize a fresh GPT-2 model!

Initializing the Model
This is the first time in this book that we won’t use the from_pretrained() method to
load a model but initialize the new model. We will, however, load the configuration of
gpt2-xl so that we use the same hyperparameters and only adapt the vocabulary size
for the new tokenizer. We then initialize a new model with this configuration with the
from_config() method:

from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained(model_ckpt)
config = AutoConfig.from_pretrained("gpt2-xl", vocab_size=len(tokenizer))
model = AutoModelForCausalLM.from_config(config)

Let’s check how large the model actually is:

print(f'GPT-2 (xl) size: {model_size(model)/1000**2:.1f}M parameters')

GPT-2 (xl) size: 1529.6M parameters

This is a 1.5B parameter model! This is a lot of capacity, but we also have a large data‐
set. In general, large language models are more efficient to train as long as the dataset
is reasonably large. Let’s save the newly initialized model in a models/ folder and push
it to the Hub:

model.save_pretrained("models/" + model_ckpt, push_to_hub=True,
                      organization=org)
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Pushing the model to the Hub may take a few minutes given the size of the check‐
point (> 5 GB). Since this model is quite large, we’ll also create a smaller version that
we can train to make sure everything works before scaling up. We will take the stan‐
dard GPT-2 size as a base:

tokenizer = AutoTokenizer.from_pretrained(model_ckpt)
config_small = AutoConfig.from_pretrained("gpt2", vocab_size=len(tokenizer))
model_small = AutoModelForCausalLM.from_config(config_small)

print(f'GPT-2 size: {model_size(model_small)/1000**2:.1f}M parameters')

GPT-2 size: 111.0M parameters

And let’s save it to the Hub as well for easy sharing and reuse:

model_small.save_pretrained("models/" + model_ckpt + "-small", push_to_hub=True,
                            organization=org)

Now that we have two models we can train, we need to make sure we can feed them
the input data efficiently during training.

Implementing the Dataloader
To be able to train with maximal efficiency, we will want to supply our model with
sequences filling its context. For example, if the context length of our model is 1,024
tokens, we always want to provide 1,024-token sequences during training. But some
of our code examples might be shorter or longer than 1,024 tokens. To feed batches
with full sequences of sequence_length to our model, we should thus either drop the
last incomplete sequence or pad it. However, this will render our training slightly less
efficient and force us to take care of padding and masking padded token labels. We
are much more compute- than data-constrained, so we’ll take the easy and efficient
way here. We can use a little trick to make sure we don’t lose too many trailing seg‐
ments: we can tokenize several examples and then concatenate them, separated by the
special end-of-sequence token, to get a very long sequence. Finally, we split this
sequence into equally sized chunks as shown in Figure 10-5. With this approach, we
lose at most a small fraction of the data at the end.
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Figure 10-5. Preparing sequences of varying length for causal language modeling by con‐
catenating several tokenized examples with an EOS token before chunking them

We can, for instance, make sure we have roughly one hundred full sequences in our
tokenized examples by defining our input string character length as:

input_characters = number_of_sequences * sequence_length * characters_per_token

where:

• input_characters is the number of characters in the string input to our
tokenizer.

• number_of_sequences is the number of (truncated) sequences we would like
from our tokenizer, (e.g., 100).

• sequence_length is the number of tokens per sequence returned by the token‐
izer, (e.g., 1,024).

• characters_per_token is the average number of characters per output token
that we first need to estimate.

If we input a string with input_characters characters we will thus get on average
number_of_sequences output sequences, and we can easily calculate how much input
data we are losing by dropping the last sequence. If number_of_sequences=100 it
means that we stack roughly 100 sequences and at most lose the last element, which
might be too short or too long. This corresponds to at most losing 1% of our dataset.
At the same time, this approach ensures that we don’t introduce a bias by cutting off
the majority of file endings.
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Let’s first estimate the average character length per token in our dataset:

examples, total_characters, total_tokens = 500, 0, 0
dataset = load_dataset('transformersbook/codeparrot-train', split='train',
                       streaming=True)

for _, example in tqdm(zip(range(examples), iter(dataset)), total=examples):
    total_characters += len(example['content'])
    total_tokens += len(tokenizer(example['content']).tokens())

characters_per_token = total_characters / total_tokens

print(characters_per_token)

3.6233025034779565

With that we have all that’s needed to create our own IterableDataset (which is a
helper class provided by PyTorch) for preparing constant-length inputs for the
model. We just need to inherit from IterableDataset and set up the __iter__()
function that yields the next element with the logic we just walked through:

import torch
from torch.utils.data import IterableDataset

class ConstantLengthDataset(IterableDataset):

    def __init__(self, tokenizer, dataset, seq_length=1024,
                 num_of_sequences=1024, chars_per_token=3.6):
        self.tokenizer = tokenizer
        self.concat_token_id = tokenizer.eos_token_id
        self.dataset = dataset
        self.seq_length = seq_length
        self.input_characters = seq_length * chars_per_token * num_of_sequences

    def __iter__(self):
        iterator = iter(self.dataset)
        more_examples = True
        while more_examples:
            buffer, buffer_len = [], 0
            while True:
                if buffer_len >= self.input_characters:
                    m=f"Buffer full: {buffer_len}>={self.input_characters:.0f}"
                    print(m)
                    break
                try:
                    m=f"Fill buffer: {buffer_len}<{self.input_characters:.0f}"
                    print(m)
                    buffer.append(next(iterator)["content"])
                    buffer_len += len(buffer[-1])
                except StopIteration:
                    iterator = iter(self.dataset)

            all_token_ids = []
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            tokenized_inputs = self.tokenizer(buffer, truncation=False)
            for tokenized_input in tokenized_inputs["input_ids'"]:
            for tokenized_input in tokenized_inputs:
                all_token_ids.extend(tokenized_input + [self.concat_token_id])

            for i in range(0, len(all_token_ids), self.seq_length):
                input_ids = all_token_ids[i : i + self.seq_length]
                if len(input_ids) == self.seq_length:
                    yield torch.tensor(input_ids)

The __iter__() function builds up a buffer of strings until it contains enough char‐
acters. All the elements in the buffer are tokenized and concatenated with the EOS
token, then the long sequence in all_token_ids is chunked in seq_length-sized sli‐
ces. Normally, we need attention masks to stack padded sequences of varying length
and make sure the padding is ignored during training. We have taken care of this by
only providing sequences of the same (maximal) length, so we don’t need the masks
here and only return the input_ids. Let’s test our iterable dataset:

shuffled_dataset = dataset.shuffle(buffer_size=100)
constant_length_dataset = ConstantLengthDataset(tokenizer, shuffled_dataset,
                                                num_of_sequences=10)
dataset_iterator = iter(constant_length_dataset)

lengths = [len(b) for _, b in zip(range(5), dataset_iterator)]
print(f"Lengths of the sequences: {lengths}")

Fill buffer: 0<36864
Fill buffer: 3311<36864
Fill buffer: 9590<36864
Fill buffer: 22177<36864
Fill buffer: 25530<36864
Fill buffer: 31098<36864
Fill buffer: 32232<36864
Fill buffer: 33867<36864
Buffer full: 41172>=36864
Lengths of the sequences: [1024, 1024, 1024, 1024, 1024]

Nice, this works as intended and we get constant-length inputs for the model. Now
that we have a reliable data source for the model, it’s time to build the actual training
loop.

Notice that we shuffled the raw dataset before creating a Constant
LengthDataset. Since this is an iterable dataset, we can’t just shuffle
the whole dataset at the beginning. Instead, we set up a buffer with
size buffer_size and shuffle the elements in this buffer before we
get elements from the dataset.
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Defining the Training Loop
We now have all the elements to write our training loop. One obvious limitation of
training our own language model is the memory limits on the GPUs we will use. Even
on a modern graphics card you can’t train a model at GPT-2 scale in reasonable time.
In this tutorial we will implement data parallelism, which will help us utilize several
GPUs for training. Fortunately, we can use  Accelerate to make our code scalable.
The  Accelerate library is designed to make distributed training—and changing the
underlying hardware for training—easy. We can also use the Trainer for distributed
training but  Accelerate gives us full control over the training loop, which is what
we want to explore here.

 Accelerate provides an easy API to make training scripts run with mixed precision
and in any kind of distributed setting (single GPU, multiple GPUs, and TPUs). The
same code can then run seamlessly on your local machine for debugging purposes or
your beefy training cluster for the final training run. You only need to make a handful
of changes to your native PyTorch training loop:

  import torch
  import torch.nn.functional as F
  from datasets import load_dataset
+ from accelerate import Accelerator

- device = 'cpu'
+ accelerator = Accelerator()

- model = torch.nn.Transformer().to(device)
+ model = torch.nn.Transformer()
  optimizer = torch.optim.Adam(model.parameters())
  dataset = load_dataset('my_dataset')
  data = torch.utils.data.DataLoader(dataset, shuffle=True)
+ model, optimizer, data = accelerator.prepare(model, optimizer, data)

  model.train()
  for epoch in range(10):
      for source, targets in data:
-         source = source.to(device)
-         targets = targets.to(device)
          optimizer.zero_grad()
          output = model(source)
          loss = F.cross_entropy(output, targets)
-         loss.backward()
+         accelerator.backward(loss)
          optimizer.step()

The core part of the changes is the call to prepare(), which makes sure the model,
optimizers, and dataloaders are all prepared and distributed on the infrastructure.
These minor changes to the PyTorch training loop enable you to easily scale training
across different infrastructures. With that in mind, let’s start building up our training
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script and define a few helper functions. First we set up the hyperparameters for
training and wrap them in a Namespace for easy access:

from argparse import Namespace

# Commented parameters correspond to the small model
config = {"train_batch_size": 2, # 12
          "valid_batch_size": 2, # 12
          "weight_decay": 0.1,
          "shuffle_buffer": 1000,
          "learning_rate": 2e-4, # 5e-4
          "lr_scheduler_type": "cosine",
          "num_warmup_steps": 750, # 2000
          "gradient_accumulation_steps": 16, # 1
          "max_train_steps": 50000, # 150000
          "max_eval_steps": -1,
          "seq_length": 1024,
          "seed": 1,
          "save_checkpoint_steps": 50000} # 15000

args = Namespace(**config)

Next, we set up logging for training. Since we are training a model from scratch, the
training run will take a while and require expensive infrastructure. Therefore, we
want to make sure that all the relevant information is stored and easily accessible. The
setup_logging() method sets up three levels of logging: using a standard Python
Logger, TensorBoard, and Weights & Biases. Depending on your preferences and use
case, you can add or remove logging frameworks here:

from torch.utils.tensorboard import SummaryWriter
import logging
import wandb

def setup_logging(project_name):
    logger = logging.getLogger(__name__)
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, handlers=[
        logging.FileHandler(f"log/debug_{accelerator.process_index}.log"),
        logging.StreamHandler()])
    if accelerator.is_main_process: # We only want to set up logging once
        wandb.init(project=project_name, config=args)
        run_name = wandb.run.name
        tb_writer = SummaryWriter()
        tb_writer.add_hparams(vars(args), {'0': 0})
        logger.setLevel(logging.INFO)
        datasets.utils.logging.set_verbosity_debug()
        transformers.utils.logging.set_verbosity_info()
    else:
        tb_writer = None
        run_name = ''
        logger.setLevel(logging.ERROR)
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        datasets.utils.logging.set_verbosity_error()
        transformers.utils.logging.set_verbosity_error()
    return logger, tb_writer, run_name

Each worker gets a unique accelerator.process_index, which we use with the File
Handler to write the logs of each worker to an individual file. We also use the
accelerator.is_main_process attribute, which is only true for the main worker.
We make sure we don’t initialize the TensorBoard and Weights & Biases loggers sev‐
eral times, and we decrease the logging levels for the other workers. We return the
autogenerated, unique wandb.run.name, which we use later to name our experiment
branch on the Hub.

We’ll also define a function to log the metrics with TensorBoard and Weights & Bia‐
ses. We again use the accelerator.is_main_process here to ensure that we only log
the metrics once and not for each worker:

def log_metrics(step, metrics):
    logger.info(f"Step {step}: {metrics}")
    if accelerator.is_main_process:
        wandb.log(metrics)
        [tb_writer.add_scalar(k, v, step) for k, v in metrics.items()]

Next, let’s write a function that creates the dataloaders for the training and validation
sets with our brand new ConstantLengthDataset class:

from torch.utils.data.dataloader import DataLoader

def create_dataloaders(dataset_name):
    train_data = load_dataset(dataset_name+'-train', split="train",
                              streaming=True)
    train_data = train_data.shuffle(buffer_size=args.shuffle_buffer,
                                    seed=args.seed)
    valid_data = load_dataset(dataset_name+'-valid', split="validation",
                              streaming=True)

    train_dataset = ConstantLengthDataset(tokenizer, train_data,
                                          seq_length=args.seq_length)
    valid_dataset = ConstantLengthDataset(tokenizer, valid_data,
                                          seq_length=args.seq_length)

    train_dataloader=DataLoader(train_dataset, batch_size=args.train_batch_size)
    eval_dataloader=DataLoader(valid_dataset, batch_size=args.valid_batch_size)
    return train_dataloader, eval_dataloader

At the end we wrap the dataset in a DataLoader, which also handles the batching. 
 Accelerate will take care of distributing the batches to each worker.

Another aspect we need to implement is optimization. We will set up the optimizer
and learning rate schedule in the main loop, but we define a helper function here to
differentiate the parameters that should receive weight decay. In general, biases and
LayerNorm weights are not subject to weight decay:
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def get_grouped_params(model, no_decay=["bias", "LayerNorm.weight"]):
    params_with_wd, params_without_wd = [], []
    for n, p in model.named_parameters():
        if any(nd in n for nd in no_decay):
            params_without_wd.append(p)
        else:
            params_with_wd.append(p)
    return [{'params': params_with_wd, 'weight_decay': args.weight_decay},
            {'params': params_without_wd, 'weight_decay': 0.0}]

Finally, we want to evaluate the model on the validation set from time to time, so let’s
add an evaluation function we can call that calculates the loss and perplexity on the
evaluation set:

def evaluate():
    model.eval()
    losses = []
    for step, batch in enumerate(eval_dataloader):
        with torch.no_grad():
            outputs = model(batch, labels=batch)
        loss = outputs.loss.repeat(args.valid_batch_size)
        losses.append(accelerator.gather(loss))
        if args.max_eval_steps > 0 and step >= args.max_eval_steps: break
    loss = torch.mean(torch.cat(losses))
    try:
 perplexity = torch.exp(loss)
    except OverflowError:
 perplexity = torch.tensor(float("inf"))
    return loss.item(), perplexity.item()

The perplexity measures how well the model’s output probability distributions pre‐
dict the targeted tokens. So a lower perplexity corresponds to a better performance.
Note that we can compute the perplexity by exponentiating the cross-entropy loss
which we get from the model’s output. Especially at the start of training when the loss
is still high, it is possible to get a numerical overflow when calculating the perplexity.
We catch this error and set the perplexity to infinity in these instances.

Before we put it all together in the training script, there is one more additional func‐
tion that we’ll use. As you know by now, the Hugging Face Hub uses Git under the
hood to store and version models and datasets. With the Repository class from the
huggingface_hub library you can programmatically access the repository and pull,
branch, commit, or push. We’ll use this in our script to continuously push model
checkpoints to the Hub during training.

Now that we have all these helper functions in place, we are ready to write the heart
of the training script:

set_seed(args.seed)

# Accelerator
accelerator = Accelerator()

Training a Model from Scratch | 333



samples_per_step = accelerator.state.num_processes * args.train_batch_size

# Logging
logger, tb_writer, run_name = setup_logging(project_name.split("/")[1])
logger.info(accelerator.state)

# Load model and tokenizer
if accelerator.is_main_process:
    hf_repo = Repository("./", clone_from=project_name, revision=run_name)
model = AutoModelForCausalLM.from_pretrained("./", gradient_checkpointing=True)
tokenizer = AutoTokenizer.from_pretrained("./")

# Load dataset and dataloader
train_dataloader, eval_dataloader = create_dataloaders(dataset_name)

# Prepare the optimizer and learning rate scheduler
optimizer = AdamW(get_grouped_params(model), lr=args.learning_rate)
lr_scheduler = get_scheduler(name=args.lr_scheduler_type, optimizer=optimizer,
                             num_warmup_steps=args.num_warmup_steps,
                             num_training_steps=args.max_train_steps,)
def get_lr():
    return optimizer.param_groups[0]['lr']

# Prepare everything with our `accelerator` (order of args is not important)
model, optimizer, train_dataloader, eval_dataloader = accelerator.prepare(
    model, optimizer, train_dataloader, eval_dataloader)

# Train model
model.train()
completed_steps = 0
for step, batch in enumerate(train_dataloader, start=1):
    loss = model(batch, labels=batch).loss
    log_metrics(step, {'lr': get_lr(), 'samples': step*samples_per_step,
                       'steps': completed_steps, 'loss/train': loss.item()})
    loss = loss / args.gradient_accumulation_steps
    accelerator.backward(loss)
    if step % args.gradient_accumulation_steps == 0:
        optimizer.step()
        lr_scheduler.step()
        optimizer.zero_grad()
        completed_steps += 1
    if step % args.save_checkpoint_steps == 0:
        logger.info('Evaluating and saving model checkpoint')
        eval_loss, perplexity = evaluate()
        log_metrics(step, {'loss/eval': eval_loss, 'perplexity': perplexity})
        accelerator.wait_for_everyone()
        unwrapped_model = accelerator.unwrap_model(model)
        if accelerator.is_main_process:
            unwrapped_model.save_pretrained("./")
            hf_repo.push_to_hub(commit_message=f'step {step}')
        model.train()
    if completed_steps >= args.max_train_steps:
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        break

# Evaluate and save the last checkpoint
logger.info('Evaluating and saving model after training')
eval_loss, perplexity = evaluate()
log_metrics(step, {'loss/eval': eval_loss, 'perplexity': perplexity})
accelerator.wait_for_everyone()
unwrapped_model = accelerator.unwrap_model(model)
if accelerator.is_main_process:
    unwrapped_model.save_pretrained("./")
    hf_repo.push_to_hub(commit_message=f'final model')

This is quite a code block, but remember that this is all the code you need to train a
fancy, large language model on a distributed infrastructure. Let’s deconstruct the
script a little bit and highlight the most important parts:

Model saving
We run the script from within the model repository, and at the start we check out
a new branch named after the run_name we get from Weights & Biases. Later, we
commit the model at each checkpoint and push it to the Hub. With that setup
each experiment is on a new branch and each commit represents a model check‐
point. Note that we need to call wait_for_everyone() and unwrap_model() to
make sure the model is properly synchronized when we store it.

Optimization
For the model optimization we use AdamW with a cosine learning rate schedule
after a linear warming-up period. For the hyperparameters, we closely follow the
parameters described in the GPT-3 paper for similar-sized models.8

Evaluation
We evaluate the model on the evaluation set every time we save—that is, every
save_checkpoint_steps and after training. Along with the validation loss we
also log the validation perplexity.

Gradient accumulation and checkpointing
The required batch sizes don’t fit in a GPU’s memory, even when we run on the
latest GPUs. Therefore, we implement gradient accumulation, which gathers gra‐
dients over several backward passes and optimizes once enough gradients are
accumulated. In Chapter 6, we saw how we can do this with the Trainer. For the
large model, even a single batch does not quite fit on a single GPU. Using a
method called gradient checkpointing we can trade some of the memory footprint
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9 You can read more about gradient checkpointing on OpenAI’s release post.

for an approximately 20% training slowdown.9 This allows us to fit even the large
model in a single GPU.

One aspect that might still be a bit obscure is what it means to train a model on mul‐
tiple GPUs. There are several approaches to train models in a distributed fashion
depending on the size of your model and volume of data. The approach utilized by 
Accelerate is called DataDistributedParallelism (DDP). The main advantage of
this approach is that it allows you to train models faster with larger batch sizes that
wouldn’t fit into any single GPU. The process is illustrated in Figure 10-6.

Figure 10-6. Illustration of the processing steps in DDP with four GPUs

Let’s go through the pipeline step by step:

1. Each worker consists of a GPU. In  Accelerate, there is a dataloader running on
the main process that prepares the batches of data and sends them to all the
workers.

2. Each GPU receives a batch of data and calculates the loss and respective accumu‐
lated gradients from forward and backward passes with a local copy of the model.

3. The gradients from each node are averaged with a reduce pattern, and the aver‐
aged gradients are sent back to each worker.
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4. The gradients are applied using the optimizer on each node individually.
Although this might seem like redundant work, it avoids transferring copies of
the large models between nodes. We’ll need to update the model at least once,
and without this approach the other nodes would each need to wait until they’d
received the updated version.

5. Once all models are updated we start all over again, with the main worker pre‐
paring new batches.

This simple pattern allows us to train large models extremely fast by scaling up to the
number of available GPUs without much additional logic. Sometimes, however, this is
not enough. For example, if the model does not fit on a single GPU you might need
more sophisticated parallelism strategies. Now that we have all the pieces needed for
training, it’s time to launch a job! As you’ll see in the next section, this is quite simple
to do.

The Training Run
We’ll save the training script in a file called codeparrot_training.py so that we can exe‐
cute it on our training server. To make life even easier, we’ll add it along with a
requirements.txt file containing all the required Python dependencies to the model
repository on the Hub. Remember that the models on the Hub are essentially Git
repositories so we can just clone the repository, add any files we want, and then push
them back to the Hub. On the training server, we can then spin up training with the
following handful of commands:

$ git clone https://huggingface.co/transformersbook/codeparrot
$ cd codeparrot
$ pip install -r requirements.txt
$ wandb login
$ accelerate config
$ accelerate launch codeparrot_training.py

And that’s it—our model is now training! Note that wandb login will prompt you to
authenticate with Weights & Biases for logging. The accelerate config command
will guide you through setting up the infrastructure; you can see the settings used for
this experiment in Table 10-2. We use an a2-megagpu-16g instance for all experi‐
ments, which is a workstation with 16 A100 GPUs with 40 GB of memory each.

Training a Model from Scratch | 337

https://oreil.ly/3uhfq
https://oreil.ly/ndqSB
https://oreil.ly/ZJIG3


Table 10-2. Configuration used to train the CodeParrot models

Setting Value
Compute environment? multi-GPU

How many machines? 1

DeepSpeed? No

How many processes? 16

Use FP16? Yes

Running the training script with these settings on that infrastructure takes about 24
hours and 7 days for the small and large models, respectively. If you train your own
custom model, make sure your code runs smoothly on smaller infrastructure in order
to make sure that expensive long run goes smoothly as well. After the full training
run completes successfully, you can merge the experiment branch on the Hub back
into the main branch with the following commands:

$ git checkout main
$ git merge <RUN_NAME>
$ git push

Naturally, RUN_NAME should be the name of the experiment branch on the Hub you
would like to merge. Now that we have a trained model, let’s have a look at how we
can investigate its performance.

Results and Analysis
After anxiously monitoring the logs for a week, you will probably see loss and per‐
plexity curves that look like those shown in Figure 10-7. The training loss and valida‐
tion perplexity go down continuously, and the loss curve looks almost linear on the
log-log scale. We also see that the large model converges faster in terms of processed
tokens, although the overall training takes longer.
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Figure 10-7. Training loss and validation perplexity as a function of processed tokens for
the small and large CodeParrot models

So what can we do with our freshly baked language model, straight out of the GPU
oven? Well, we can use it to write some code for us. There are two types of analyses
we can conduct: qualitative and quantitative. In the former, we look at concrete
examples and try to better understand in which cases the model succeeds and where
it fails. In the latter case, we evaluate the model’s performance statistically on a large
set of test cases. In this section we’ll explore how we can use our model. First we’ll
have a look at a few examples, and then we’ll briefly discuss how we could evaluate
the model systematically and more robustly. First, let’s wrap the small model in a
pipeline and use it to continue some code inputs:

from transformers import pipeline, set_seed
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model_ckpt = 'transformersbook/codeparrot-small'
generation = pipeline('text-generation', model=model_ckpt, device=0)

Now we can use the generation pipeline to generate candidate completions from a
given prompt. By default, the pipeline will generate code until a predefined maximum
length, and the output could contain multiple functions or classes. So, to keep the
outputs concise, we’ll implement a first_block() function that uses regular expres‐
sions to extract the first occurrence of a function or class. The complete_code()
function below applies this logic to print out the completions generated by
CodeParrot:

import re
from transformers import set_seed

def first_block(string):
    return re.split('\nclass|\ndef|\n#|\n@|\nprint|\nif', string)[0].rstrip()

def complete_code(pipe, prompt, max_length=64, num_completions=4, seed=1):
    set_seed(seed)
    gen_kwargs = {"temperature":0.4, "top_p":0.95, "top_k":0, "num_beams":1,
                  "do_sample":True,}
    code_gens = generation(prompt, num_return_sequences=num_completions,
                            max_length=max_length, **gen_kwargs)
    code_strings = []
    for code_gen in code_gens:
        generated_code = first_block(code_gen['generated_text'][len(prompt):])
        code_strings.append(generated_code)
    print(('\n'+'='*80 + '\n').join(code_strings))

Let’s start with a simple example and have the model write a function for us that cal‐
culates the area of a rectangle:

prompt = '''def area_of_rectangle(a: float, b: float):
    """Return the area of the rectangle."""'''
complete_code(generation, prompt)

    return math.sqrt(a * b)
================================================================================

    return a * b / 2.0
================================================================================

    return a * b
================================================================================

    return a * b / a

That looks pretty good! Although not all the generations are correct, the right solu‐
tion is in there. Now, can the model also solve a more complex task of extracting
URLs from an HTML string? Let’s see:
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prompt = '''def get_urls_from_html(html):
    """Get all embedded URLs in a HTML string."""'''
complete_code(generation, prompt)

    if not html:
        return []
    return [url for url in re.findall(r'<a href="(/[^/]+/[^"]+?)">', html)]
================================================================================

    return [url for url in re.findall(r'<a href="(.*?)"', html)
            if url]
================================================================================

    return [url for url in re.findall(r'<a href="(/.*)",', html)]
================================================================================

    return re.findall(r'<a href="(.*?)" class="url"[^>]*>', html)

Although it didn’t quite get it right in the second attempt, the other three generations
are correct. We can test the function on the Hugging Face home page:

import requests

def get_urls_from_html(html):
    return [url for url in re.findall(r'<a href="(.*?)"', html) if url]

print(" | ".join(get_urls_from_html(requests.get('https://hf.co/').text)))

https://github.com/huggingface/transformers | /allenai | /facebook |
/asteroid-team | /google | /amazon | /speechbrain | /microsoft | /grammarly |
/models | /inference-api | /distilbert-base-uncased |
/dbmdz/bert-large-cased-finetuned-conll03-english |
https://huggingface.co/transformers | https://arxiv.org/abs/1811.06031 |
https://arxiv.org/abs/1803.10631 | https://transformer.huggingface.co/ | /coref
| https://medium.com/huggingface/distilbert-8cf3380435b5

We can see that all the URLs starting with https are external pages, whereas the oth‐
ers are subpages of the main website. That’s exactly what we wanted. Finally, let’s load
the large model and see if we can use it to translate a function from pure Python to
NumPy:

model_ckpt = 'transformersbook/codeparrot'
generation = pipeline('text-generation', model=model_ckpt, device=0)

prompt = '''# a function in native python:
def mean(a):
    return sum(a)/len(a)

# the same function using numpy:
import numpy as np
def mean(a):'''
complete_code(generation, prompt, max_length=64)
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Setting `pad_token_id` to `eos_token_id`:0 for open-end generation.

    return np.mean(a)
================================================================================

    return np.mean(a)
================================================================================

    return np.mean(a)
================================================================================

    return np.mean(a)

That worked! Let’s see if we can also use the CodeParrot model to help us build a
Scikit-learn model:

prompt = '''X = np.random.randn(100, 100)
y = np.random.randint(0, 1, 100)

# fit random forest classifier with 20 estimators'''
complete_code(generation, prompt, max_length=96)

Setting `pad_token_id` to `eos_token_id`:0 for open-end generation.

reg = DummyRegressor()

forest = RandomForestClassifier(n_estimators=20)

forest.fit(X, y)
================================================================================

clf = ExtraTreesClassifier(n_estimators=100, max_features='sqrt')
clf.fit(X, y)
================================================================================

clf = RandomForestClassifier(n_estimators=20, n_jobs=n_jobs, random_state=1)
clf.fit(X, y)
================================================================================

clf = RandomForestClassifier(n_estimators=20)
clf.fit(X, y)

Although in the second attempt it tried to train an extra-trees classifier, it generated
what we asked in the other cases.

In Chapter 5 we explored a few metrics to measure the quality of generated text.
Among these was the BLEU score, which is frequently used for that purpose. While
this metric has limitations in general, it is particularly badly suited for our use case.
The BLEU score measures the overlap of n-grams between the reference texts and the
generated texts. When writing code we have a lot of freedom in terms of variables
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10 M. Chen et al., “Evaluating Large Language Models Trained on Code”, (2021).

and classes, and the success of a program does not depend on the naming scheme as
long as it is consistent. However, the BLEU score would punish a generation that
deviates from the reference naming, which might in fact be almost impossible to pre‐
dict (even for a human coder).

In software development there are much better and more reliable ways to measure
the quality of code, such as unit tests. This is how all the OpenAI Codex models were
evaluated: by running several code generations for coding tasks through a set of unit
tests and calculating the fraction of generations that pass the tests.10 For a proper per‐
formance measure we should apply the same evaluation regimen to our models but
this is beyond the scope of this chapter. You can find details on how CodeParrot per‐
forms on the HumanEval benchmark in the model’s accompanying blog post.

Conclusion
Let’s take a step back for a moment and contemplate what we have achieved in this
chapter. We set out to create a code autocomplete function for Python. First we built a
custom, large-scale dataset suitable for pretraining a large language model. Then we
created a custom tokenizer that is able to efficiently encode Python code with that
dataset. Finally, with the help of  Accelerate we put everything together and wrote a
training script to train small and large versions of a GPT-2 model from scratch on a
multi-GPU infrastructure, in under two hundred lines of code. Investigating the
model outputs, we saw that it can generate reasonable code continuations, and we
discussed how the model could be systematically evaluated.

You now not only know how to fine-tune any of the many pretrained models on the
Hub, but also how to pretrain a custom model from scratch when you have enough
data and compute resources available. You are now prepared to tackle almost any
NLP use case with transformers. So the question is: where to next? In the next and
last chapter, we’ll have a look at where the field is currently moving and what new
exciting applications and domains beyond NLP transformer models can tackle.
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CHAPTER 11

Future Directions

Throughout this book we’ve explored the powerful capabilities of transformers across
a wide range of NLP tasks. In this final chapter, we’ll shift our perspective and look at
some of the current challenges with these models and the research trends that are try‐
ing to overcome them. In the first part we explore the topic of scaling up transform‐
ers, both in terms of model and corpus size. Then we turn our attention toward
various techniques that have been proposed to make the self-attention mechanism
more efficient. Finally, we explore the emerging and exciting field of multimodal
transformers, which can model inputs across multiple domains like text, images, and
audio.

Scaling Transformers
In 2019, the researcher Richard Sutton wrote a provocative essay entitled “The Bitter
Lesson” in which he argued that:

The biggest lesson that can be read from 70 years of AI research is that general meth‐
ods that leverage computation are ultimately the most effective, and by a large mar‐
gin…. Seeking an improvement that makes a difference in the shorter term,
researchers seek to leverage their human knowledge of the domain, but the only thing
that matters in the long run is the leveraging of computation. These two need not run
counter to each other, but in practice they tend to…. And the human-knowledge
approach tends to complicate methods in ways that make them less suited to taking
advantage of general methods leveraging computation.

The essay provides several historical examples, such as playing chess or Go, where the
approach of encoding human knowledge within AI systems was ultimately outdone
by increased computation. Sutton calls this the “bitter lesson” for the AI research
field:
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1 J. Kaplan et al., “Scaling Laws for Neural Language Models”, (2020).

We have to learn the bitter lesson that building in how we think we think does not
work in the long run…. One thing that should be learned from the bitter lesson is the
great power of general purpose methods, of methods that continue to scale with
increased computation even as the available computation becomes very great. The two
methods that seem to scale arbitrarily in this way are search and learning.

There are now signs that a similar lesson is at play with transformers; while many of
the early BERT and GPT descendants focused on tweaking the architecture or pre‐
training objectives, the best-performing models in mid-2021, like GPT-3, are essen‐
tially basic scaled-up versions of the original models without many architectural
modifications. In Figure 11-1 you can see a timeline of the development of the largest
models since the release of the original Transformer architecture in 2017, which
shows that model size has increased by over four orders of magnitude in just a few
years!

Figure 11-1. Parameter counts over time for prominent Transformer architectures

This dramatic growth is motivated by empirical evidence that large language models
perform better on downstream tasks and that interesting capabilities such as zero-
shot and few-shot learning emerge in the 10- to 100-billion parameter range. How‐
ever, the number of parameters is not the only factor that affects model performance;
the amount of compute and training data must also be scaled in tandem to train these
monsters. Given that large language models like GPT-3 are estimated to cost $4.6
million to train, it is clearly desirable to be able to estimate the model’s performance
in advance. Somewhat surprisingly, the performance of language models appears to
obey a power law relationship with model size and other factors that is codified in a set
of scaling laws.1 Let’s take a look at this exciting area of research.
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2 The dataset size is measured in the number of tokens, while the model size excludes parameters from the
embedding layers.

3 T. Henighan et al., “Scaling Laws for Autoregressive Generative Modeling”, (2020).

Scaling Laws
Scaling laws allow one to empirically quantify the “bigger is better” paradigm for lan‐
guage models by studying their behavior with varying compute budget C, dataset size
D, and model size N.2 The basic idea is to chart the dependence of the cross-entropy
loss L on these three factors and determine if a relationship emerges. For autoregres‐
sive models like those in the GPT family, the resulting loss curves are shown in
Figure 11-2, where each blue curve represents the training run of a single model.

Figure 11-2. Power-law scaling of test loss versus compute budget (left), dataset size
(middle), and model size (right) (courtesy of Jared Kaplan)

From these loss curves we can draw a few conclusions about:

The relationship of performance and scale
Although many NLP researchers focus on architectural tweaks or hyperparame‐
ter optimization (like tuning the number of layers or attention heads) to improve
performance on a fixed set of datasets, the implication of scaling laws is that a
more productive path toward better models is to focus on increasing N, C, and D
in tandem.

Smooth power laws
The test loss L has a power law relationship with each of N, C, and D across sev‐
eral orders of magnitude (power law relationships are linear on a log-log scale).
For X = N, C, D we can express these power law relationships as L X ∼ 1/Xα,
where α is a scaling exponent that is determined by a fit to the loss curves shown
in Figure 11-2.3 Typical values for αX lie in the 0.05–0.095 range, and one attrac‐
tive feature of these power laws is that the early part of a loss curve can be
extrapolated to predict what the approximate loss would be if training was con‐
ducted for much longer.
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Sample efficiency
Large models are able to reach the same performance as smaller models with a
smaller number of training steps. This can be seen by comparing the regions
where a loss curve plateaus over some number of training steps, which indicates
one gets diminishing returns in performance compared to simply scaling up the
model.

Somewhat surprisingly, scaling laws have also been observed for other modalities, like
images, videos, and mathematical problem solving, as illustrated in Figure 11-3.

Figure 11-3. Power-law scaling of test loss versus compute budget across a wide range of
modalities (courtesy of Tom Henighan)

Whether power-law scaling is a universal property of transformer language models is
currently unknown. For now, we can use scaling laws as a tool to extrapolate large,
expensive models without having to explicitly train them. However, scaling isn’t quite
as easy as it sounds. Let’s now look at a few challenges that crop up when charting this
frontier.

Challenges with Scaling
While scaling up sounds simple in theory (“just add more layers!”), in practice there
are many difficulties. Here are a few of the biggest challenges you’re likely to
encounter when scaling language models:

Infrastructure
Provisioning and managing infrastructure that potentially spans hundreds or
thousands of nodes with as many GPUs is not for the faint-hearted. Are the
required number of nodes available? Is communication between nodes a bottle‐
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4 However, recently a distributed deep learning framework has been proposed that enables smaller groups to
pool their computational resources and pretrain models in a collaborative fashion. See M. Diskin et al., “Dis‐
tributed Deep Learning in Open Collaborations”, (2021).

neck? Tackling these issues requires a very different skill set than that found in
most data science teams, and typically involves specialized engineers familiar
with running large-scale, distributed experiments.

Cost
Most ML practitioners have experienced the feeling of waking up in the middle
of the night in a cold sweat, remembering they forgot to shut down that fancy
GPU on the cloud. This feeling intensifies when running large-scale experiments,
and most companies cannot afford the teams and resources necessary to train
models at the largest scales. Training a single GPT-3-sized model can cost several
million dollars, which is not the kind of pocket change that many companies
have lying around.4

Dataset curation
A model is only as good as the data it is trained on. Training large models
requires large, high-quality datasets. When using terabytes of text data it
becomes harder to make sure the dataset contains high-quality text, and even
preprocessing becomes challenging. Furthermore, one needs to ensure that there
is a way to control biases like sexism and racism that these language models can
acquire when trained on large-scale webtext corpora. Another type of considera‐
tion revolves around licensing issues with the training data and personal infor‐
mation that can be embedded in large text datasets.

Model evaluation
Once the model is trained, the challenges don’t stop. Evaluating the model on
downstream tasks again requires time and resources. In addition, you’ll want to
probe the model for biased and toxic generations, even if you are confident that
you created a clean dataset. These steps take time and need to be carried out
thoroughly to minimize the risks of adverse effects later on.

Deployment
Finally, serving large language models also poses a significant challenge. In Chap‐
ter 8 we looked at a few approaches, such as distillation, pruning, and quantiza‐
tion, to help with these issues. However, this may not be enough if you are
starting with a model that is hundreds of gigabytes in size. Hosted services such
as the OpenAI API or Hugging Face’s Accelerated Inference API are designed to
help companies that cannot or do not want to deal with these deployment
challenges.
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This is by no means an exhaustive list, but it should give you an idea of the kinds of
considerations and challenges that go hand in hand with scaling language models to
ever larger sizes. While most of these efforts are centralized around a few institutions
that have the resources and know-how to push the boundaries, there are currently
two community-led projects that aim to produce and probe large language models in
the open:

BigScience
This is a one-year-long research workshop that runs from 2021 to 2022 and is
focused on large language models. The workshop aims to foster discussions and
reflections around the research questions surrounding these models (capabilities,
limitations, potential improvements, bias, ethics, environmental impact, role in
the general AI/cognitive research landscape) as well as the challenges around cre‐
ating and sharing such models and datasets for research purposes and among the
research community. The collaborative tasks involve creating, sharing, and evalu‐
ating a large multilingual dataset and a large language model. An unusually large
compute budget was allocated for these collaborative tasks (several million GPU
hours on several thousands GPUs). If successful, this workshop will run again in
the future, focusing on involving an updated or different set of collaborative
tasks. If you want to join the effort, you can find more information at the proj‐
ect’s website.

EleutherAI
This is a decentralized collective of volunteer researchers, engineers, and devel‐
opers focused on AI alignment, scaling, and open source AI research. One of its
aims is to train and open-source a GPT-3-sized model, and the group has already
released some impressive models like GPT-Neo and GPT-J, which is a 6-billion-
parameter model and currently the best-performing publicly available trans‐
former in terms of zero-shot performance. You can find more information at
EleutherAI’s website.

Now that we’ve explored how to scale transformers across compute, model size, and
dataset size, let’s examine another active area of research: making self-attention more
efficient.

Attention Please!
We’ve seen throughout this book that the self-attention mechanism plays a central
role in the architecture of transformers; after all, the original Transformer paper is
called “Attention Is All You Need”! However, there is a key challenge associated with
self-attention: since the weights are generated from pairwise comparisons of all the
tokens in a sequence, this layer becomes a computational bottleneck when trying to
process long documents or apply transformers to domains like speech processing or
computer vision. In terms of time and memory complexity, the self-attention layer of
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5 Although standard implementations of self-attention have O n2  time and memory complexity, a recent paper
by Google researchers shows that the memory complexity can be reduced to O log n  via a simple reordering
of the operations.

6 Yi Tay et al., “Efficient Transformers: A Survey”, (2020).

the Transformer architecture naively scales like � n2 , where n is the length of the
sequence.5

As a result, much of the recent research on transformers has focused on making self-
attention more efficient. The research directions are broadly clustered in Figure 11-4.

Figure 11-4. A summarization of research directions to make attention more efficient
(courtesy of Yi Tay et al.)6

A common pattern is to make attention more efficient by introducing sparsity into
the attention mechanism or by applying kernels to the attention matrix. Let’s take a
quick look at some of the most popular approaches to make self-attention more effi‐
cient, starting with sparsity.

Sparse Attention
One way to reduce the number of computations that are performed in the self-
attention layer is to simply limit the number of query-key pairs that are generated
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7 T. Lin et al., “A Survey of Transformers”, (2021).

according to some predefined pattern. There have been many sparsity patterns
explored in the literature, but most of them can be decomposed into a handful of
“atomic” patterns illustrated in Figure 11-5.

Figure 11-5. Common atomic sparse attention patterns for self-attention: a colored
square means the attention score is calculated, while a blank square means the score is
discarded (courtesy of Tianyang Lin)

We can describe these patterns as follows:7

Global attention
Defines a few special tokens in the sequence that are allowed to attend to all other
tokens

Band attention
Computes attention over a diagonal band

Dilated attention
Skips some query-key pairs by using a dilated window with gaps

Random attention
Randomly samples a few keys for each query to compute attention scores

Block local attention
Divides the sequence into blocks and restricts attention within these blocks

In practice, most transformer models with sparse attention use a mix of the atomic
sparsity patterns shown in Figure 11-5 to generate the final attention matrix. As illus‐
trated in Figure 11-6, models like Longformer use a mix of global and band attention,
while BigBird adds random attention to the mix. Introducing sparsity into the atten‐
tion matrix enables these models to process much longer sequences; in the case of
Longformer and BigBird the maximum sequence length is 4,096 tokens, which is 8
times larger than BERT!
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Figure 11-6. Sparse attention patterns for recent transformer models (courtesy of
Tianyang Lin)

It is also possible to learn the sparsity pattern in a data-driven man‐
ner. The basic idea behind such approaches is to cluster the tokens
into chunks. For example, Reformer uses a hash function to cluster
similar tokens together.

Now that we’ve seen how sparsity can reduce the complexity of self-attention, let’s
take a look at another popular approach based on changing the operations directly.

Linearized Attention
An alternative way to make self-attention more efficient is to change the order of
operations that are involved in computing the attention scores. Recall that to compute
the self-attention scores of the queries and keys we need a similarity function, which
for the transformer is just a simple dot product. However, for a general similarity
function sim qi, k j  we can express the attention outputs as the following equation:

yi = ∑
j

sim Qi, K j
∑k sim Qi, Kk

V j

The trick behind linearized attention mechanisms is to express the similarity function
as a kernel function that decomposes the operation into two pieces:

sim Q j, K j = ϕ Qi
Tϕ K j

where ϕ is typically a high-dimensional feature map. Since ϕ Qi  is independent of j
and k, we can pull it under the sums to write the attention outputs as follows:
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8 A. Katharopoulos et al., “Transformers Are RNNs: Fast Autoregressive Transformers with Linear Attention”,
(2020); K. Choromanski et al., “Rethinking Attention with Performers”, (2020).

9 J. Gordon and B. Van Durme, “Reporting Bias and Knowledge Extraction”, (2013).

yi =
ϕ Qi

T∑ j ϕ K j V j
T

ϕ Qi
T∑k ϕ Kk

By first computing ∑ j ϕ K j V j
T and ∑k ϕ Kk , we can effectively linearize the space and

time complexity of self-attention! The comparison between the two approaches is
illustrated in Figure 11-7. Popular models that implement linearized self-attention
include Linear Transformer and Performer.8

Figure 11-7. Complexity difference between standard self-attention and linearized self-
attention (courtesy of Tianyang Lin)

In this section we’ve seen how Transformer architectures in general and attention in
particular can be scaled up to achieve even better performance on a wide range of
tasks. In the next section we’ll have a look at how transformers are branching out of
NLP into other domains such as audio and computer vision.

Going Beyond Text
Using text to train language models has been the driving force behind the success of
transformer language models, in combination with transfer learning. On the one
hand, text is abundant and enables self-supervised training of large models. On the
other hand, textual tasks such as classification and question answering are common,
and developing effective strategies for them allows us to address a wide range of real-
world problems.

However, there are limits to this approach, including:

Human reporting bias
The frequencies of events in text may not represent their true frequencies.9 A
model solely trained on text from the internet might have a very distorted image
of the world.
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10 M. Chen et al., “Generative Pretraining from Pixels,” Proceedings of the 37th International Conference on
Machine Learning 119 (2020):1691–1703, https://proceedings.mlr.press/v119/chen20s.html.

Common sense
Common sense is a fundamental quality of human reasoning, but is rarely writ‐
ten down. As such, language models trained on text might know many facts
about the world, but lack basic common-sense reasoning.

Facts
A probabilistic language model cannot store facts in a reliable way and can pro‐
duce text that is factually wrong. Similarly, such models can detect named enti‐
ties, but have no direct way to access information about them.

Modality
Language models have no way to connect to other modalities that could address
the previous points, such as audio or visual signals or tabular data.

So, if we could solve the modality limitations we could potentially address some of
the others as well. Recently there has been a lot of progress in pushing transformers
to new modalities, and even building multimodal models. In this section we’ll high‐
light a few of these advances.

Vision
Vision has been the stronghold of convolutional neural networks (CNNs) since they
kickstarted the deep learning revolution. More recently, transformers have begun to
be applied to this domain and to achieve efficiency similar to or better than CNNs.
Let’s have a look at a few examples.

iGPT
Inspired by the success of the GPT family of models with text, iGPT (short for image
GPT) applies the same methods to images.10 By viewing images as sequences of pixels,
iGPT uses the GPT architecture and autoregressive pretraining objective to predict
the next pixel values. Pretraining on large image datasets enables iGPT to “autocom‐
plete” partial images, as displayed in Figure 11-8. It also achieves performant results
on classification tasks when a classification head is added to the model.
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11 A. Dosovitskiy et al., “An Image Is Worth 16x16 Words: Transformers for Image Recognition at Scale”, (2020).

Figure 11-8. Examples of image completions with iGPT (courtesy of Mark Chen)

ViT
We saw that iGPT follows closely the GPT-style architecture and pretraining proce‐
dure. Vision Transformer (ViT)11 is a BERT-style take on transformers for vision, as
illustrated in Figure 11-9. First the image is split into smaller patches, and each of
these patches is embedded with a linear projection. The results strongly resemble the
token embeddings in BERT, and what follows is virtually identical. The patch embed‐
dings are combined with position embeddings and then fed through an ordinary
transformer encoder. During pretraining some of the patches are masked or distor‐
ted, and the objective is to predict the average color of the masked patch.
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Figure 11-9. The ViT architecture (courtesy of Alexey Dosovitskiy et al.)

Although this approach did not produce better results when pretrained on the stan‐
dard ImageNet dataset, it scaled significantly better than CNNs on larger datasets.

ViT is integrated in  Transformers, and using it is very similar to the NLP pipelines
that we’ve used throughout this book. Let’s start by loading the image of a rather
famous dog:

from PIL import Image
import matplotlib.pyplot as plt

image = Image.open("images/doge.jpg")
plt.imshow(image)
plt.axis("off")
plt.show()
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(2021).

To load a ViT model, we just need to specify the image-classification pipeline,
and then we feed in the image to extract the predicted classes:

import pandas as pd
from transformers import pipeline

image_classifier = pipeline("image-classification")
preds = image_classifier(image)
preds_df = pd.DataFrame(preds)
preds_df

score label

0 0.643599 Eskimo dog, husky

1 0.207407 Siberian husky

2 0.060160 dingo, warrigal, warragal, Canis dingo

3 0.035359 Norwegian elkhound, elkhound

4 0.012927 malamute, malemute, Alaskan malamute

Great, the predicted class seems to match the image!

A natural extension of image models is video models. In addition to the spatial
dimensions, videos come with a temporal dimension. This makes the task more chal‐
lenging as the volume of data gets much bigger and one needs to deal with the extra
dimension. Models such as TimeSformer introduce a spatial and temporal attention
mechanism to account for both.12 In the future, such models can help build tools for a
wide range of tasks such as classification or annotation of video sequences.
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Tables
A lot of data, such as customer data within a company, is stored in structured data‐
bases instead of as raw text. We saw in Chapter 7 that with question answering mod‐
els we can query text with a question in natural text. Wouldn’t it be nice if we could
do the same with tables, as shown in Figure 11-10?

Figure 11-10. Question answering over a table (courtesy of Jonathan Herzig)

TAPAS (short for Table Parser)13 to the rescue! This model applies the Transformer
architecture to tables by combining the tabular information with the query, as illus‐
trated in Figure 11-11.

Figure 11-11. Architecture of TAPAS (courtesy of Jonathan Herzig)

Let’s look at an example of how TAPAS works in practice. We have created a fictitious
version of this book’s table of contents. It contains the chapter number, the name of
the chapter, as well as the starting and ending pages of the chapters:

book_data = [
    {"chapter": 0, "name": "Introduction", "start_page": 1, "end_page": 11},
    {"chapter": 1, "name": "Text classification", "start_page": 12,
     "end_page": 48},
    {"chapter": 2, "name": "Named Entity Recognition", "start_page": 49,
     "end_page": 73},
    {"chapter": 3, "name": "Question Answering", "start_page": 74,
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     "end_page": 120},
    {"chapter": 4, "name": "Summarization", "start_page": 121,
     "end_page": 140},
    {"chapter": 5, "name": "Conclusion", "start_page": 141,
     "end_page": 144}
]

We can also easily add the number of pages each chapter has with the existing fields.
In order to play nicely with the TAPAS model, we need to make sure that all columns
are of type str:

table = pd.DataFrame(book_data)
table['number_of_pages'] = table['end_page']-table['start_page']
table = table.astype(str)
table

chapter name start_page end_page number_of_pages

0 0 Introduction 1 11 10

1 1 Text classification 12 48 36

2 2 Named Entity Recognition 49 73 24

3 3 Question Answering 74 120 46

4 4 Summarization 121 140 19

5 5 Conclusion 141 144 3

By now you should know the drill. We first load the table-question-answering
pipeline:

table_qa = pipeline("table-question-answering")

and then pass some queries to extract the answers:

table_qa = pipeline("table-question-answering")
queries = ["What's the topic in chapter 4?",
           "What is the total number of pages?",
           "On which page does the chapter about question-answering start?",
           "How many chapters have more than 20 pages?"]
preds = table_qa(table, queries)

These predictions store the type of table operation in an aggregator field, along with
the answer. Let’s see how well TAPAS fared on our questions:

for query, pred in zip(queries, preds):
    print(query)
    if pred["aggregator"] == "NONE":
        print("Predicted answer: " + pred["answer"])
    else:
        print("Predicted answer: " + pred["answer"])
    print('='*50)

360 | Chapter 11: Future Directions



What's the topic in chapter 4?
Predicted answer: Summarization
==================================================
What is the total number of pages?
Predicted answer: SUM > 10, 36, 24, 46, 19, 3
==================================================
On which page does the chapter about question-answering start?
Predicted answer: AVERAGE > 74
==================================================
How many chapters have more than 20 pages?
Predicted answer: COUNT > 1, 2, 3
==================================================

For the first chapter, the model predicted exactly one cell with no aggregation. If we
look at the table, we see that the answer is in fact correct. In the next example the
model predicted all the cells containing the number of pages in combination with the
sum aggregator, which again is the correct way of calculating the total number of
pages. The answer to question three is also correct; the average aggregation is not
necessary in that case, but it doesn’t make a difference. Finally, we have a question
that is a little bit more complex. To determine how many chapters have more than 20
pages we first need to find out which chapters satisfy that criterion and then count
them. It seem that TAPAS again got it right and correctly determined that chapters 1,
2, and 3 have more than 20 pages, and added a count aggregator to the cells.

The kinds of questions we asked can also be solved with a few simple Pandas com‐
mands; however, the ability to ask questions in natural language instead of Python
code allows a much wider audience to query the data to answer specific questions.
Imagine such tools in the hands of business analysts or managers who are able verify
their own hypotheses about the data!

Multimodal Transformers
So far we’ve looked at extending transformers to a single new modality. TAPAS is
arguably multimodal since it combines text and tables, but the table is also treated as
text. In this section we examine transformers that combine two modalities at once:
audio plus text and vision plus text.

Speech-to-Text
Although being able to use text to interface with a computer is a huge step forward,
using spoken language is an even more natural way for us to communicate. You can
see this trend in industry, where applications such as Siri and Alexa are on the rise
and becoming progressively more useful. Also, for a large fraction of the population,
writing and reading are more challenging than speaking. So, being able to process
and understand audio is not only convenient, but can help many people access more
information. A common task in this domain is automatic speech recognition (ASR),
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which converts spoken words to text and enables voice technologies like Siri to
answer questions like “What is the weather like today?”

The wav2vec 2.0 family of models are one of the most recent developments in ASR:
they use a transformer layer in combination with a CNN, as illustrated in
Figure 11-12.14 By leveraging unlabeled data during pretraining, these models achieve
competitive results with only a few minutes of labeled data.

Figure 11-12. Architecture of wav2vec 2.0 (courtesy of Alexei Baevski)

The wav2vec 2.0 models are integrated in  Transformers, and you won’t be sur‐
prised to learn that loading and using them follows the familiar steps that we have
seen throughout this book. Let’s load a pretrained model that was trained on 960
hours of speech audio:

asr = pipeline("automatic-speech-recognition")

To apply this model to some audio files we’ll use the ASR subset of the SUPERB data‐
set, which is the same dataset the model was pretrained on. Since the dataset is quite
large, we’ll just load one example for our demo purposes:

from datasets import load_dataset

ds = load_dataset("superb", "asr", split="validation[:1]")
print(ds[0])

{'chapter_id': 128104, 'speaker_id': 1272, 'file': '~/.cache/huggingf
ace/datasets/downloads/extracted/e4e70a454363bec1c1a8ce336139866a39442114d86a433
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15 A. Baevski et al., “Unsupervised Speech Recognition”, (2021).

6014acd4b1ed55e55/LibriSpeech/dev-clean/1272/128104/1272-128104-0000.flac',
'id': '1272-128104-0000', 'text': 'MISTER QUILTER IS THE APOSTLE OF THE MIDDLE
CLASSES AND WE ARE GLAD TO WELCOME HIS GOSPEL'}

Here we can see that the audio in the file column is stored in the FLAC coding for‐
mat, while the expected transcription is given by the text column. To convert the
audio to an array of floats, we can use the SoundFile library to read each file in our
dataset with map():

import soundfile as sf

def map_to_array(batch):
    speech, _ = sf.read(batch["file"])
    batch["speech"] = speech
    return batch

ds = ds.map(map_to_array)

If you are using a Jupyter notebook you can easily play the sound files with the fol‐
lowing IPython widgets:

from IPython.display import Audio

display(Audio(ds[0]['speech'], rate=16000))

Finally, we can pass the inputs to the pipeline and inspect the prediction:

pred = asr(ds[0]["speech"])
print(pred)

{'text': 'MISTER QUILTER IS THE APOSTLE OF THE MIDDLE CLASSES AND WE ARE GLAD TO
WELCOME HIS GOSPEL'}

This transcription seems to be correct. We can see that some punctuation is missing,
but this is hard to get from audio alone and could be added in a postprocessing step.
With only a handful of lines of code we can build ourselves a state-of-the-art speech-
to-text application!

Building a model for a new language still requires a minimum amount of labeled
data, which can be challenging to obtain, especially for low-resource languages. Soon
after the release of wav2vec 2.0, a paper describing a method named wav2vec-U was
published.15 In this work, a combination of clever clustering and GAN training is
used to build a speech-to-text model using only independent unlabeled speech and
unlabeled text data. This process is visualized in detail in Figure 11-13. No aligned
speech and text data is required at all, which enables the training of highly perform‐
ant speech-to-text models for a much larger spectrum of languages.
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Answering”, (2016).

Figure 11-13. Training scheme for wav2vec-U (courtesy of Alexsei Baevski)

Great, so transformers can now “read” text and “hear” audio—can they also “see”?
The answer is yes, and this is one of the current hot research frontiers in the field.

Vision and Text
Vision and text are another natural pair of modalities to combine since we frequently
use language to communicate and reason about the contents of images and videos. In
addition to the vision transformers, there have been several developments in the
direction of combining visual and textual information. In this section we will look at
four examples of models combining vision and text: VisualQA, LayoutLM, DALL·E,
and CLIP.

VQA
In Chapter 7 we explored how we can use transformer models to extract answers to
text-based questions. This can be done ad hoc to extract information from texts or
offline, where the question answering model is used to extract structured information
from a set of documents. There have been several efforts to expand this approach to
vision with datasets such as VQA,16 shown in Figure 11-14.
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17 H. Tan and M. Bansal, “LXMERT: Learning Cross-Modality Encoder Representations from Transformers”,
(2019); L.H. Li et al., “VisualBERT: A Simple and Performant Baseline for Vision and Language”, (2019).

Figure 11-14. Example of a visual question answering task from the VQA dataset (cour‐
tesy of Yash Goyal)

Models such as LXMERT and VisualBERT use vision models like ResNets to extract
features from the pictures and then use transformer encoders to combine them with
the natural questions and predict an answer.17

LayoutLM
Analyzing scanned business documents like receipts, invoices, or reports is another
area where extracting visual and layout information can be a useful way to recognize
text fields of interest. Here the LayoutLM family of models are the current state of the
art. They use an enhanced Transformer architecture that receives three modalities as
input: text, image, and layout. Accordingly, as shown in Figure 11-15, there are
embedding layers associated with each modality, a spatially aware self-attention
mechanism, and a mix of image and text/image pretraining objectives to align the
different modalities. By pretraining on millions of scanned documents, LayoutLM
models are able to transfer to various downstream tasks in a manner similar to BERT
for NLP.
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18 A. Ramesh et al., “Zero-Shot Text-to-Image Generation”, (2021).

Figure 11-15. The model architecture and pretraining strategies for LayoutLMv2 (cour‐
tesy of Yang Xu)

DALL·E
A model that combines vision and text for generative tasks is DALL·E.18 It uses the
GPT architecture and autoregressive modeling to generate images from text. Inspired
by iGPT, it regards the words and pixels as one sequence of tokens and is thus able to
continue generating an image from a text prompt, as shown in Figure 11-16.

366 | Chapter 11: Future Directions

https://arxiv.org/abs/2102.12092
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Figure 11-16. Generation examples with DALL·E (courtesy of Aditya Ramesh)

CLIP
Finally, let’s have a look at CLIP,19 which also combines text and vision but is designed
for supervised tasks. Its creators constructed a dataset with 400 million image/caption
pairs and used contrastive learning to pretrain the model. The CLIP architecture con‐
sists of a text and an image encoder (both transformers) that create embeddings of
the captions and images. A batch of images with captions is sampled, and the contras‐
tive objective is to maximize the similarity of the embeddings (as measured by the dot
product) of the corresponding pair while minimizing the similarity of the rest, as
illustrated in Figure 11-17.

In order to use the pretrained model for classification the possible classes are embed‐
ded with the text encoder, similar to how we used the zero-shot pipeline. Then the
embeddings of all the classes are compared to the image embedding that we want to
classify, and the class with the highest similarity is chosen.
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Figure 11-17. Architecture of CLIP (courtesy of Alec Radford)

The zero-shot image classification performance of CLIP is remarkable and competi‐
tive with fully supervised trained vision models, while being more flexible with
regard to new classes. CLIP is also fully integrated in  Transformers, so we can try it
out. For image-to-text tasks, we instantiate a processor that consists of a feature extrac‐
tor and a tokenizer. The role of the feature extractor is to convert the image into a
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form suitable for the model, while the tokenizer is responsible for decoding the mod‐
el’s predictions into text:

from transformers import CLIPProcessor, CLIPModel

clip_ckpt = "openai/clip-vit-base-patch32"
model = CLIPModel.from_pretrained(clip_ckpt)
processor = CLIPProcessor.from_pretrained(clip_ckpt)

Then we need a fitting image to try it out. What would be better suited than a picture
of Optimus Prime?

image = Image.open("images/optimusprime.jpg")
plt.imshow(image)
plt.axis("off")
plt.show()

Next, we set up the texts to compare the image against and pass it through the model:

import torch

texts = ["a photo of a transformer", "a photo of a robot", "a photo of agi"]
inputs = processor(text=texts, images=image, return_tensors="pt", padding=True)
with torch.no_grad():
    outputs = model(**inputs)
logits_per_image = outputs.logits_per_image
probs = logits_per_image.softmax(dim=1)
probs

tensor([[0.9557, 0.0413, 0.0031]])

Well, it almost got the right answer (a photo of AGI of course). Jokes aside, CLIP
makes image classification very flexible by allowing us to define classes through text
instead of having the classes hardcoded in the model architecture. This concludes our
tour of multimodal transformer models, but we hope we’ve whetted your appetite.
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Where to from Here?
Well that’s the end of the ride; thanks for joining us on this journey through the trans‐
formers landscape! Throughout this book we’ve explored how transformers can
address a wide range of tasks and achieve state-of-the-art results. In this chapter we’ve
seen how the current generation of models are being pushed to their limits with scal‐
ing and how they are also branching out into new domains and modalities.

If you want to reinforce the concepts and skills that you’ve learned in this book, here
are a few ideas for where to go from here:

Join a Hugging Face community event
Hugging Face hosts short sprints focused on improving the libraries in the eco‐
system, and these events are a great way to meet the community and get a taste
for open source software development. So far there have been sprints on adding
600+ datasets to  Datasets, fine-tuning 300+ ASR models in various languages,
and implementing hundreds of projects in JAX/Flax.

Build your own project
One very effective way to test your knowledge in machine learning is to build a
project to solve a problem that interests you. You could reimplement a trans‐
former paper, or apply transformers to a novel domain.

Contribute a model to  Transformers
If you’re looking for something more advanced, then contributing a newly pub‐
lished architecture to  Transformers is a great way to dive into the nuts and
bolts of the library. There is a detailed guide to help you get started in the 
Transformers documentation.

Blog about what you’ve learned
Teaching others what you’ve learned is a powerful test of your own knowledge,
and in a sense this was one of the driving motivations behind us writing this
book! There are great tools to help you get started with technical blogging; we
recommend fastpages as you can easily use Jupyter notebooks for everything.
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